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¢{-CLASS GROUPS OF FIELDS IN KUMMER TOWERS

JIANING LI, YI OUYANG, YUE XU, AND SHENXING ZHANG

ABSTRACT. Let £ and p be prime numbers and Kn,m = Q(pEL",ngm), We study the ¢-class
group of Kn m in this paper. When ¢ = 2, we determine the structure of the 2-class group of
Kn,m for all (n,m) € Z2 in the case p = 2 or p = 3,5 mod 8, and for (n,m) = (n,0), (n,1)
or (1,m) in the case p = 7 mod 16, generalizing the results of Parry about the 2-divisibility of
the class number of K3 9. We also obtain results about the /-class group of K, m when ¢ is
odd and in particular £ = 3. The main tools we use are class field theory, including Chevalley’s
ambiguous class number formula and its generalization by Gras, and a stationary result about
the ¢-class groups in the 2-dimensional Kummer tower {Kn,m }-

1. INTRODUCTION

In this paper we let £ and p be prime numbers. For n and m non-negative integers, let K, ,, =
Q(pz% ,Caem ). Let Ay m and hy, m be the £-part of the class group and the class number of K, .
The aim of this paper is to study the ¢-class groups of K, ,,, when n and m vary.

First let us assume ¢ = 2. It is well-known that the class number h; o of Q(,/p) is odd by the
genus theory of Gauss. In 1886, Weber [Web86] proved that the class number hg ., of Q(Com+1) is
odd for any m > 0. In 1980, by a more careful application of genus theory for quartic fields, Parry
showed that A is cyclic and

(i) f p=2or p=3,5mod 8, then 21 hayp.

(ii) If p =7 mod 16, then 2 || hoo.

(iii) If p = 15 mod 16, then 2 | ho .

(iv) If p =1 mod 8, then 2 | hao. Moreover, if 2 is not a fourth power modulo p, then 2 || hz .
For p = 9 mod 16, Lemmermeyer showed that 2 || ko, see [Monl0]. For p = 15 mod 16, one can
show that 4 | ha ¢ using genus theory (unpublished manuscripts by the authors and Lemmermeyer
respectively).

Our first result of this paper is

Theorem 1.1. Let p be a prime number, K, , = Q(p’le,szﬂ). Let Ay, ,,, be the 2-part of the
class group and hy, ., the class number of Ky, .

(1) If p=2 or p=3mod 8, then hy m is odd for n,m > 0.

(2) If p=5mod 8, then hy o and hy m are odd for ny,m >0 and 2 || hym forn > 2 and m > 1.

(3) If p=T7mod 16, then A, o 2 Z)2Z, Ap1 2 7L)27 x )27 for n > 2, and A, 2 72/2m71Z
form > 1.

Let p = 3mod 8 and € = a + b\/p be the fundamental unit of Q(,/p). Parry [Par80] and

Zhang-Yue [ZY14] showed that « = —1 mod p and va(a) = 1. Applying Theorem [[J] we obtain
the following analogue of their results.

Theorem 1.2. Assume p="7mod 16. Let € be the fundamental unit of Q(\/p).
(1) There exists a totally positive unit n of Q(/p) such that N(n) = € and the group of units

06( Yp) — (n,e,—1).
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(2) For any unitn € N~ (e) in Q(¢/p), one has vg(Tro( y5)/0(y5) (1) = 3 and ' = —sgn(n’) mod
/p, where q is the unique prime of Q(\/p) above 2 and sgn is the signature function.

Remark 1.3. (1) We may call the unit n the relative fundamental unit of Q(/p). The first part
of this theorem is due to Parry, see [Par80, Theorem 3]. We include a proof here for completeness.

(2) Forn' € 06(%) such that N(n') = €, we know 0’ is either totally positive or totally negative

since € is totally positive. Therefore the sign of ' is well-defined.

Now assume ¢ is odd. Recall that ¢ is regular if £ { ho 1, the class number of Q(¢¢). We have the
following result:

Theorem 1.4. Assume £ is an odd reqular prime, and p is either £ or a prime generating the
group (Z/02Z)*. Then {4 hy m, the class number of Ky m = Q(p7, (pm) for any n,m > 0.

For the particular case ¢ = 3, the following results about the 3-class groups of Q(/p) and
Q(¢/p, ¢3) were obtained by several authors:
(1) ([HonTI]) If p =3 or p =2 mod 3, then 31 h1 1 and 31t hq .
(ii) (|Ger76] ) If p =1 mod 3, then ranksA; o = 1 and ranksA; ; = 1 or 2.
(ili) ([AoulS]) If p=4,7mod 9, then Ay ¢ = Z/3Z and
if (3
z/32  if (p)3 41,
2 e (3) _
/327 i (%) =1
(iv) ([C-EOQ3], [Ger03]) If p =1 mod 9, then ranksA; ; = 1 if and only if 9 | hy o.

We refer to [Ger(05] and [Aoul8| for more details. However, hy, ,,, and A, ,,, for general n and m
was rarely studied in the literature as far as we know. We have the following result in this case:

~

A =

Theorem 1.5. Let p be a prime number. Let A, ,, be the 3-part of the class group and hy, ., the
class number of Ky, m = Q(pe%n ,Cam).
(1) If p=3 orp=2,5mod 9, then 31 hy m for n,m > 0.
(2) If p = 4,7mod 9 and the cubic residue symbol (%) # 1, then Ay m = Z/3Z for n > 1,
3
m > 0.

Remark 1.6. A. Lei [Leil7] obtained the growth formula of class numbers in Zg_l X Zg-extensions
for an odd prime £. Under the conditions in Theorem or L3, the Kummer tower Ko oo/ Ko1
satisfies the conditions in Lei’s paper. Then by |[Leil7, Corollary 3.4], one has for each m, there
exist integers fy, and Ap, such that

Ve(hn,m) = tml™ + Amn 4+ O(1) for n > 0.
Theorem and [L3 thus imply that the invariants p, = Am = 0 for all m.

To prove our results, we need to use class field theory, including Chevalley’s ambiguous class
number formula and its generalization by Gras. The most technical part of our paper is a stationary
result of f-class groups in a cyclic Z/{?Z-extension under certain conditions, and its application
to the study of ¢-class groups in the 2-dimensional Kummer tower {K,, ,,}. We emphasize that
the stationary result could be used to other situations. Due to the computational nature of our
results, we impose conditions to simplify computation. It would be of interest to study other cases,
for example, replacing p by some positive integer with 2 or more prime factors.

The organization of this paper is as follows. In §2 we introduce notations and conventions
for the paper, and present basic properties of the Hilbert symbols and Gras’ formula on genus
theory. In §3, we prove our stationary result on {-class groups in certain cyclic f-extensions by
using argument from Iwasawa theory, and then prove a stationary result about the ¢-class groups
of K, y. §4 is devoted to the proof of results for the easier case that ¢ is odd and §5 for the more
complicated case ¢ = 2.
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2. PRELIMINARY

2.1. Notations and Conventions. The numbers ¢ and p are always prime numbers. The ¢-Sylow
subgroup of a finite abelian group M is denoted by M (¢). (, is a primitive n-th root of unity and
Ly, is the group of n-th roots of unity.

For a number field K, we denote by Clg, hi, O, Fx and cl the class group, the class number,
the ring of integers, the unit group of the ring of integers and the ideal class map of K respectively.
For w a place of K, K,, is the completion of K by w. For p a prime of K, v, is the additive
valuation associated to p.

For an extension K/F of number fields, v a place of F' and w a place of K above v, let
ew/w = e(w/v, K/F) be the ramification index in K/F if v is finite and e,,;, = [Ky : F,] if v is
infinite. We say that w/v is ramified if e,,/, > 1. w/v is totally ramified if e,,/, = [K : F], in this
case w is the only place above v and we can also say that v is totally ramified in K/F. Note that
for v infinite, w/v is ramified if and only if w is complex and v is real, and in this case e/, = 2.
Hence an infinite place v is totally ramified if and only if K/F is quadratic, F,, = R and K,, = C.
When K/F is Galois, then e, /v is independent of w and we denote it by e,.

Denote by N, the norm map from K to F', and the induced norm map from Clg to Clg. If
the extension is clear, we use N instead of Ny p.

When K = Ky = Q(p#, Comi1), we write Clym = Cl, hpm = hic, Opm = Ok and
E, .m = Ex for simplicity. The group A, , is the ¢-Sylow subgroup of Cl,, ,,.

2.2. Hilbert symbol. Let n > 2 be an integer. Let k£ be a finite extension of QQ, containing p,.
Let ¢, be the local reciprocity map ¢y : k¥ — Gal(k*/k). Given a,b € kX, the n-th Hilbert
symbol is defined by

€ pn C k.

(a_b) _ d(a)(Vb)
k /n b
The following results about Hilbert symbol can be found in standard textbooks in number theory,
for example [Neul3l Chapters IV and V].

Proposition 2.1. Let a,b € k*.

b
(1) (al; )n =14 a is a norm from the extension k(¥/b)/k;

!/ / / /
o (%), = () (42), s (22) = (32) (40,
a a\~—
® (), = (%),
0 (S50 e (22
(5) Let w be anuniformizer of k. Let q = |0/ (w)| be the cardinality of the residue field of k. If
p1in, then (w];u)n = w(u)qv;ll where w : OF — (4—1 is the unique map such that v = w(u) mod w

forue OF.
(6) Let M/k be a finite extension. For a € M*,b € k™, one has the following norm-compatible

property
(57), = (F452),.

When k£ =R, pu,, C R if and only if n = 1 or 2. For a,b € k* define
(a,b) _{—1, if a < 0andb<0;
2

k 1, otherwise.

When k& = C, define (%b) =1 for any a,b € k*.

The following is the produc? formula of Hilbert symbols, see [Neul3, Chapter VI, Theorem 8.1].
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b
Proposition 2.2. Let K be a number field such that p, C K. For any place v of K, set (a;) =
v /n

b
1yt ((a, ) ) where 1, is the canonical embedding of K — K,. Then for a,b € K*, one has

K,
(%), =+

where v runs over all places of K.
2.3. Three useful Lemmas.

Lemma 2.3. Suppose K/F is a cyclic £-extension with Galois group G and C' is a G-submodule
of Cli. Then £t |(Clg/C)C| implies that Clg () = C(¢). In particular, ¢ { |C1| implies that
Cthk.

Proof. Consider the action of G on (Clg/C)(¢). The cardinality of the orbit of ¢ € (Clg/C)(¢) \
(Clg /C)(£)€ is a multiple of £. Thus |(Clgx/C)(¢)| = |(Clx/C)(£)¢| mod £. Hence £ 1 |(Clx /C)¥|
implies (Clg/C)(¢) = 0 and then Clg(¢) = C(¢) by the exact sequence 0 — C(¢) — Clg(¢) —
(Clie/C)(0). .

Lemma 2.4. Let K,,/ Ky be a cyclic extension of number fields of degree £™. Let K; be the unique
intermediate field such that [K; : Ko = ¢¢ for 0 < i < n. If a prime ideal p of Ko is ramified in
K1 /Ky, then p is totally ramified in K, /K.

Proof. Let I, be the inertia group of p. Then Kl = K; for some i and K /K is unramified at p.
Since K, /K is ramified at p, we must have Kb = Ky. In other words, p is totally ramified. O

Lemma 2.5. Suppose the number field extension M /K contains no unramified abelian sub-extension
other than K. Then the norm map Cly; — Cli is surjective. In particular, hy | has.

Proof. This is [Was97, Theorem 10.1]. O

2.4. Gras’ formula on class groups in cyclic extensions.

Theorem 2.6 (Gras). Let K/F be a cyclic extension of number fields with Galois group G. Let
C be a G-submodule of Cli. Let D be a subgroup of fractional ideals of K such that cl(D) = C.
Denote by Ap = {x € F* | (x)Op € ND}. Then

|CIF| H,U €y 1

INC| [K : F] [Ap:ApNKX]'

where the product runs over all places of F'.

(2.1) [(Clg /C)Y| =

Proof. See |[Gral7l, Section 3] or [Gra73l Chapter IV]. Gras proved the theorem for (narrow) ray
class groups, but his proof works for class groups. 0

Remark 2.7. (1) The index [Ap : Ap "NK*] is independent of the choice of D.
(2) Take C = {1} and D = {1}, then Ap is the unit group Ep, and Gras’ formula is nothing
but the ambiguous class number formula of Chevalley:

|| 1
2.2 1G] = |Clp| - 22e . .
( ) |CK| |C F| [K: F] [EF1 EFQNKX]

In fact the proof of Gras’ formula is based on Chevalley’s formula, whose proof can be found in
[Lan90, Chapter 13, Lemma 4.1].

One can use Hilbert symbols to compute the index [Ap : Ap " NK*].
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Lemma 2.8. Let F' be a number field and uqg C F. Assume K = F({/a) is a Kummer extension
of F of degree d. Let D be any subgroup of the group of fractional ideals of K and Ap = {z €
F* | (x)Or € ND}. Define

z,a

p=ppxsr Ao — [[ 2 ((T)d)v’

where v passes through all places of F ramified in K/F. Then
(1) Ker(p) = Ap N NK*. In particular, [Ap : Ap "INK*] = |p(Ap)].
(2) Let 11 be the product map [], pa — pa, then Il o p = 1 and hence p(Ap) C kerll :=

(IT, ¢a)"™=
(3) Ker(p) and |p(Ap)| are independent of the choice of a.

Proof. Let Ik be the group of fraction ideals of K. Note that if D C Ik, then Ap C A := Aj,..
Therefore it suffices to prove the results in the case D = Ig.

(1) For v a place of F, let w be a place of K above v. Recall that ( )d = 1 if and only if
v

v € Nk, /r, (Kj). We claim that if v is unramified, then » € Ng /g, (Kj5) for 2 € A. Suppose v
is an infinite unramified place. Then F, = K., and clearly € Ng_ /r, (K, ). Suppose v is a finite
unramified place. Since x € A, we have (z)Or = N(I). Then locally (z)OF, = Ng,/r,(J) for
some fractional ideal J of Ok, . Since Ok, is a principal ideal domain, J = (&) for some « € K;.
Hence z = uNg, /r, () with u € O}X,ﬂv. Since v is unramified, we have u € Ng_ /p, (K5) by local
class field theory. Therefore x € Nk /p, (Ky).

Now for x € Ker(p), we have x € Ng_,p, (Kj) for every place v of F. Hasse’s norm theorem
[Neul3, Chapter VI, Corollary 4.5] gives © € NK*. So Ker(p) € ANNK*. The other direction
is clear. This proves (1).

e have proved that if v is unramified, then Lay _ 1 for x € A. Therefore (2) follows
2) We h d that if fied, th .
v

x,a

from the product formula of Hilbert symbols.
(3) is a consequence of (1). O

3. STABILITY OF /-CLASS GROUPS

We now give a stationary result about /-class groups in a finite cyclic f-extension. We first
introduce the ramification hypothesis RamHyp. Let F' be a number field and K an algebraic
extension (possibly infinite) of F. Then K/F satisfies the ramification hypothesis RamHyp if

Every place of K ramified in K/F is totally ramified in K/F and there is at least
one prime ramified in K/F.

Lemma 3.1. Let G be a finite {-cyclic group with generator o. Then Z¢[G) is a local ring with
mazimal ideal (£,0 —1).

Proof. Note that Z,[G] = Z,[T]/(T*" — 1) by sending ¢ to T, where ¢" is the order of G. Let
m be a maximal ideal of Z,[T]/(T*" — 1). Then m N Z; is a prime ideal of Z,. We claim that
mNZy = {Zy.

Otherwise m N Z; = 0, namely m is disjoint with the multiplicative subset Z; \ {0}. Then m
corresponds to a prime ideal of the the ring Q[T]/(T*" — 1). Each prime ideal of Q,[T]/(T*" — 1)
is generated by a monic irreducible polynomial f(T) with f(T) | T*" — 1. By Gauss’s lemma,
f(T) has Zy-coefficients. Then m = (f(T)). But Z¢[T]/(f(T)) is not a field since Z,[T)/(f(T)) is
integral over Zy and Zy is not a field. So m N Z, = (Z,.

Then m corresponds to a maximal ideal of Fo[T]/(T*" — 1) = F,[T]/(T — 1)*". The latter is
obviously a local ring with maximal ideal (T'— 1). Hence m = (¢,T — 1). Therefore the maximal
ideal of Z[G] is (£,0 — 1). O
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Proposition 3.2. Let Ko/ Ky be a cyclic extension of number fields of degree £? satisfying RamHyp.
Let K7 be the unique nontrivial intermediate field of Ko/Kqy. Then for anyn > 1,

|Clk, /0" Clg,| = |Clk, /€"Clk,|
implies that
Clg,/"Clg, = Clg, /{"Clk, = Clg, /(" Clg,.
In particular, |Clg,(£)| = |Clk, (€)| implies that Clg,(¢) = Clk, (¢) = Clg, (£).

Proof. Denote by G = Gal(K2/Ky) = (o). Let L; be the maximal unramified abelian ¢-extension
of K; and X; = Gal(L;/K;). By class field theory X; 2 Clg, (¢). By the maximal property, L2/ Ky
is a Galois extension. Let G := Gal(Ly/Kj). The Galois group G acts on X := X, via 27 = 525
where & € G is any lifting of o. By this action X becomes a module over the local ring Z; [G]. Since
Ky C Ky C K, satisfies RamHyp, we have Lo N Ko = K. Then X/M = Gal(K2Lo/K2) = Xy
where M = Gal(L2/K2Lg). Note that KoL/ Ky is Galois, so M and X/M are also Z¢[G]-modules.

We have the following claim:
Claim: X/wM = X, where w = 1+ 0 +---+ o'~ € Z,[G].

Now for any n > 1, by the claim,

X X
M +nX wM+ X’
By the assumptions, M + ("X = wM + ¢"X. Since w lies in the maximal ideal of Z,[G], we
have M C "X by Nakayama’s Lemma. Hence we have isomorphisms which are induced by the
restrictions

_XO/["XO = and Xl/anl &=

X/ X 2 X, /0" X; 2 Xo/0" X.
By class field theory we have isomorphisms which are induced by the norm maps
Clg, /0"Clg, = Clg, /{"Clg, = Clg,/¢"Clk,.
Let n — 400, we get Clg, (¢) = Clg, (¢) = Clk, (¢).

Let us prove the claim. Note that G = G/X. Let {p1,---,ps} be the set of places of K ramified
in K5/Ky. Note that p; is not an infinite place by RamHyp. For each p;, choose a prime ideal
p; of Ly above p;. Let I; C G be the inertia subgroup of p;. The map I; — G — G induces an
isomorphism I; & G, since Lo/ K5 is unramified and Ko/ Kj is totally ramified. Let o; € I; such
that o; = 6 mod X. Then I; = (0;). Let a; = aial_l € X. Then (I1, -+, I;) = (01,02, -, at).
Since Lg is the maximal unramified abelian ¢-extension of K, we have

Gal(LQ/LO) = <é/; Il? e 7It> = <é/7 01,0a2, aat>

where ' is the commutator subgroup of G. In fact G/ = (o — 1)X. The inclusion (o — 1)X C &’
is clear. On the other hand, it is easy to check that (o — 1)X is normal in G and X /(o — 1)X is
in the center of G/(o0 — 1)X. Since G/X = G is cyclic, from the exact sequence

15 X/(c—1)X - G/(c—1)X =G —1,
we obtain G/(o — 1)X is abelian. Thus we have
Ga’l(LQ/LO) = <(U - I)Xv 01,02, " 7a’t>'

Since a; € X and X NI, = {1}, we have X N Gal(L2/Lo) = ((¢ — 1) X, ag,- - ,as). Thus the map
X — G induces the following isomorphism

X/((0 = 1)X,az,+ ,ar) = G/Gal(La/Lo) = Xo.
Therefore (0 — 1)X,ag, -+ ,at) = M. Repeat the above argument to Lo/ K1, we obtain
X/<(O.Z - I)Xv b27 T abt> = le
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where b; = afo* for each i. Obviously, (¢ — 1)X = w(o — 1)X. Recall that o; is a lifting of o so
by definition 27 = O'l'{EO'l-_l for x € X. We have

Lt -1 —(=1) _ 4-2 -1 _—(£-2)
bi =0;0," =0, a0, =0, “aio10,0; 0,
_ —(0—2 =1
_ af 2@1_1+ao,1 (=2 _ .. _ azHng +o" 7

So ((6* = 1)X,ba,- -+ ,b;) = wM and then X; = X/wM. This finishes the proof of the claim. [

Remark 3.3. (1) Let Koo /K be a Z¢-extension and Ky, its n-th layer. It is well known there exists
ng such that Ko /Ky, satisfies RamHyp. Then Proposition recovers Fukuda’s result [Fuk94]
that if |Clg,, (¢)| = |Clk,,., (£)| (resp.|Clk,, /¢Clk,, | = |Clk,, ., /{Clk,.,.|) for some m > ng, then
|Clk,.| = |Clk,, .| (resp. |Clk,, /€Clk,, | = |Clk,,../¢Clk,...|) for any i > 1. In fact, our proof is
essentially the same as the proof of the corresponding results for Zg-extensions, see [Was97, Lemma
13.14, 13.15] and [Fuk9d).

(2) Let K be a number field containing ;2. Let a € K*\K** and K, = K(%/a). Then
Gal(Kpi2/Kp) = Z/0*Z for any m. One can show that there exists some ng such that Ko /Ky,
satisfies RamHyp. If |Clk, (¢)| = |Clk,,.,(¢)| for some m > ng, then by repeatedly applying
Proposition[3.2, one can get |Clg,, ., (¢)| = |Clk,, (€)| for any i > 0.

Now let ¢ and p be prime numbers and K, ,, = Q(p%" ,Capm). The following result is a conse-
quence of Proposition

Proposition 3.4. Assume that all the primes above £ in Ky, m, are totally ramified in Ky o411, mo+1
for some integers ng > 0 and mo > 1 if £ # 2 or ng > vp(2) and mo > 1+ vp(2) if ¢ =2. Then
(1) All primes above £ in Kp, m, are totally ramified in Ky m/Kng me for all (n,m) > (ng, mo);
(2) If |Ang.mo| = |Ang+1,mo+1ls then Apm = Apg mg for all (n,m) > (ng, mo).
(3) If €1 hng+1,mo+1, then L4 hy m for all (n,m) > (ng, mo).

Proof. By the assumption for ng and mg, one has [Kpng+1,mo+1 : Kng.mo] = £ and
Gal(KnoymoJrQ/Knoymo) = Gal(KnoJrl,moJrQ/KnoJrl,mo)
= Gal(Kn0+27m0+2/Kno,mo+2) = Z/€2Z

Consider the diagram.

Kn07m0+2 Kn0+17m0+2 Kﬂo+21m0+2
Kn07m0+1 Kn0+17m0+1
Kn07m0 - Kn0+17m0

For (1), let q be a prime of K, mn, above ¢. Apply Lemma 2.4 to the two vertical lines in
the diagram, we obtain q is totally ramified in Ky t1.mo+2/Kng,mo- Apply Lemma 2.4 to the
top horizontal line in the diagram, we get q is totally ramified in Kp 42 mo+2/Kno+2,me- Hence q
is totally ramified in Ky+2.mo+2/Kng,mo- Repeatedly using the above argument, we obtain ¢ is
totally ramified in K, 1/ Kng,m, for all n > ng and m > my.

For (2), by Lemma 23 |Ang.mel = |Ang+1,mo+1| implies that

An0+17m0+1 = AnoJrl,mo = An07m0+1 = Ano,mo'

If p = ¢, the two vertical lines and the top horizontal line in the diagram satisfy RamHyp by (1).
If p # ¢, let p be a prime of Ky, above p. For any n > 1, note that " — p is a p-Eisenstein
polynomial in Ko ,[z]. Therefore Ky, 1,/ Ko.m is totally ramified at p for each n, m. In particular
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the horizontal line is totally ramified at p. Since Koo o0/ Kny,m, 15 unramified outside £ and p, the
two horizontal lines and the right most vertical line in the diagram all satisfy RamHyp by (1).
Since Ky mo+2/Kng,mo i a cyclic extension of degree ¢, applying Proposition to this
extension, we get
Aﬂo,mo-i'? = Aﬂo,mo-i'l = Anmmo'
Similarly, applying Proposition B2 to Kpo+1,me+2/Kng+1,me, We obtain

An0+1,m0+2 = An0+1,m0+1 = An0+17m0'
Therefore Apg+2,mo+1 = Ang+2,mo- Note that Kpo1o me+2/Kng.met2 18 also a cyclic extension of
degree (2. Applying Proposition to this extension, we obtain

An0+2,m0+2 = An0+11m0+1 = An07m0+2'

Thus Angt2,me+2 = Ang+1,me+1- Using the above argument inductively, we have Ay 4k mo+t =
Ang.m, for any k > 1. Finally we have Ay, = Apy me by Lemma 25

For (3), €t hng+1,mo+1 implies that € t hy, m, by Lemma Then the result follows from
(2). O

4. THE CASE THAT / IS ODD

Lemma 4.1. Assume p is either £ or a primitive element modulo (2. Then { is totally ramified
in Ky m for any (n,m) > (0,0).

Proof. For n> 1, (x + p)*" — p is an Eisenstein polynomial in Q[z] by the assumptions on p and
¢, hence is irreducible in Q[z]. This means that the extension Qg (p7¥)/Qy is totally ramifield of
degree " and py ¢ Qu(p7). As a result Qg(pe%)/(@g(pe"%l) is non-Galois of degree ¢, one has
Qe(p7, Cgm)/(@g(pe"%l ,Cem ) is also of degree £. By induction,

[Qe(p7, Gem) : Q) = £+ [Qe(p™ T, Gem) : Qe] = £*(¢™ — ™).
Then the extension Qg (pe% ,Cen )/ Qe(Cen) is cyclic of degree £, with the only subextensions of the
form Qg(pt%k, ) for 0 <k <n. If Q?bﬂ(@g(p/%n,@n) 2 Q¢(¢en ), then there exists k > 0 such that

p/%k € Q?b and hence p% € Q?b, impossible. Hence Q?b NQy (pe% ,Com) = Qp(Cen). Thus ¢ is totally
ramified in K, ,, for any n > 1, and therefore totally ramified in K, ,, for all (n,m) > (0,0). O

Proof of Theorem[I-j] By PropositionB.4land LemmalT] if £ { hq 2, then £ { hy, , for any (n, m) >
(1,2) and then ¢ { Ay, for any (n,m) > (0,0) by Lemma We prove ¢ { hy o by applying
Chevalley’s formula (22) to K 2/Kp 2. We treat the case p # ¢ and leave the case p = ¢ to the
readers.

Since p is inert in Ko 2, the ramified primes in Ky 2/ Ko 2 are pOp 2 and (1 — (2)Op 2. As £ is
regular, one has ¢ does not divides the class number Ky, for any m > 1, see [Was97, Corollary
10.5]. We now calculate the unit index in Chevalley’s formula. Recall the following map as in
Lemma 2.8

p:Eo2 — pe X i

T ((pgfg)e’ ((1?22)))'

We have the index [Ep 2 : Eo2 "INKG,] = [p(Eo,2)| < £ by product formula. Since p is a primitive

root modulo 2, we have £2 { p~! — 1. Then by the norm-compatibility of the Hilbert symbols,

—1_,

(St = (L)~ 21

Thus |p(Ep,2)| = ¢ and Chevalley’s formula gives ¢ { |Cl§2| where G = Gal(K1 2/ Ko 2). Therefore
¢4 hy2 by Lemma 23] O
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Proof of Theorem 14 (1) is a special case of Theorem [[.4l

For (2), by tracing the proof of Lemma 1], we obtain that 3 is totally ramified in K, ,,/Q for
any n > 1. To prove (2), we first show that As o =2 Ay 1 =2 Z/37Z. We apply Gras’ formula (2] in
the case

K32/Koz2, C=(cl(q22)), D= (q22)

where (22 is the unique prime ideal of K52 above 3. In this case

Ap = (£(o, 1 — (o, 1 -, 1 - G5)-

Since p = 4,7 mod 9, we have pOp 2 = p1p2. The ramified primes of Koo in Kz 2 are qo.1, 1, Pa2-
For the map

p:AD — pg X po X po
o ((22),(22),(22))
P1 /9 \p2 /9 \qo2/9
defined in Lemma 28, we know p(Ap) C (ug X po x o) I=1, [Ap : Ap N N(K55)] = [p(Ap)| and
[Eo,2 : Eo2 N N(Ky5)] = [p(Eo2)l-

Now Lemma L2 tells us that [p(Ap)| = 81 and |p(Ep,2)| = 27. Hence Gras’ formula implies that
31 (Cla2/0)% where G = Gal(K22/Kp2). This means Ay o = C' by Lemma [Z3l In particular,
Ao = C1§2(3). By Chevalley’s formula (2.2]), we have |Ag 2| = |Cl§2| =3. Form <2,n <2, the
norm map from As o to Ay, . is surjective. It has been shown In [Aoul8| that A; ¢ = Z/3Z, the
inequalities |A1,0| < |A1,1] < |Az2| then imply that Ag o =2 Ay 1 = Z/3Z.

By Proposition B4, we have A, ,,, = Z/3Z for any n > 1,m > 1. For n > 1, note that
3=141,0] <|Ano| <|An1| =3, then A, ¢ = Z/3Z. This completes the proof of (2). O

Lemma 4.2. We have |p(Ap)| = 81 and |p(Ep2)| = 27.

Proof. By the product formula, |p(Ap)| < 81. To get equality, it suffices to show |p(Ap)| > 81.
We first compute p(Cy). In the local field Q, (o), one has

(@Cjﬁcﬁ))s 7

which is a primitive 9-th root of unity since p = 4,7 mod 9. The prime ideals p; and ps above p
induce two embeddings from Ko 2 to Qp({o) which are not Gal(Q, /Q,)-conjugate. We choose the
corresponding embeddings by setting p;(Co) = (o and p2((o) = g ' Then

Co, Co, b
(;—1]9)9: (;—Qp>9:<9 ’

By the product formula, one has

P21 20 -1)
9

PG = (G 67 G T ) and [{p(G)] =9
To prove |p(Ap)| > 81, it suffices to show that p(1 — (9)® & (p((o)). We have

_C ’ 3 _C ) _C )
(1(@17(29)1))9 - (1Qp(§9)p)3 - (1 ng p)3’
_C ’ 3 _C ) 3 _C ) _<717
50,5 (@) (e s

_ _ =1
() (), = (D)

and hence
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where the first equality is by definition, the second equality is by the norm-compatibility of Hilbert
1— 3 1— 3
symbols, and the last equality is by assumptions on p. This implies (#) #+ (M>
1

9 P2 9
and p(1 —Go)* & (p(Co))-
Now we compute |p(Ep2)|. Since 3 | hi, one has 3 | hg2 by Lemma By Chevalley’s
formula and Lemma 23], we must have

|p(Eo2)| < 27.

Let 04 € Gal(Q(¢s)/Q) be given by 04(Co) = (3. Since p = 4,7 mod 9, we have o4(p;) = pi
(i =1,2). It follows then

(w)g = (1-¢)"7" mod p; = o4 ((1‘7@)9) _ (M)“.

Pi Pi pi 9

Therefore p(1=2) = p(1 — (9)*. As we have proved, [p(Eoz2)| > [(p(Go), p(1=52))| = 27. Hence

[p(Eo,2)| = 27. O

5. THE CASE ¢ = 2

In this section, Ky, = Q(p%" , Com+1), Ap.m and hy, n, are the 2-part of the class group and the
class number of K, ,, respectively.

5.1. The cases p =2 and p = 3,5 mod 8.

Proof of Theorem [l for p = 2. The prime 2 is totally ramified in K3 3 = Q(+/2, (16) and hg 3 = 1.
Therefore 2 is totally ramified in Koo oo and 2 t Ay, for n > 1,m > 2 by Proposition B4l The
remaining (n, m) follows from Lemma O

Lemma 5.1. Suppose p = 3 mod 8.

(1) The unique prime above 2 in Kj 1 s totally ramified in Koo oo/ K1 1.

(2) I, ev = 32 where v runs over the places of Koz and e, is the ramification index of v in
Ky2/Kop.

(3) [E072 : Eo)g N NK;Q] = 8.

Proof. (1) We only need to show that the unique prime above 2 in K is totally ramified in
K272/K111 by Propositionm

It is easy to see that K /K is ramified at the prime above 2. To see the prime above 2
is also ramified in K3 2/K 2, we consider the local fields extension Q2((s, ¢/p)/Q2((s, /). Note
that

o~ JQ2(¥/3) if p=3mod 16,
Q2(\/ﬁ)_{<@z(x‘7ﬁ) if p =11 mod 16.

Since the fields Qo(v/3) and Qz(+/11) are not Galois over Qs,

52 N Qa2(Gs, ¢/p) C Q3° N Qa(Gss /P) = Qa(Gs, VD),

where Q4" (resp. Q3P) is the maximal unramified (resp. abelian) extension of Q. Thus Q2(Cs, /P)/Q2((s, /P)
is totally ramified. So K»o/K7 1 is totally ramified at 2.
(2) Since p = 3 mod 8, we have pOp a2 = pip2, with py,po totally ramified in Ko 2. Then
ep, = [Qp(¥/p,Cs) : Qp(¢s)] = 4. Let q be the unique prime ideal above 2 in Ky. Then eq = 2
as Qa2(\/p,(s)/Q2(Cs) is unramified. Since Kj2/Ko2 is unramified outside 2 and p, we have

I1, ev = 32.
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(3) Note that Ego = (Cs, 1+ v/2). Recall the following map as in Lemma 28}
P Eo2 — g X pig X pig
r—= (DG (),)
p1 /4" N\ p2 /4 \ g /4
We have |p(E072)| = [Eo)g : Eo)g N NK;Q] and p(Eo)g) C (/L4 X g X /L4)H:l.
Let t1,02 : Q(¢s) — Qp(¢s) be the corresponding embeddings of p1, p2 such that ¢1({s) = (s and

— 71. B d ﬁ ~t~ x,p _ fl L](x)7p f . _ 1 2
12(Cs) = (g y definition ( v )4 L (Qp(C8))4 or j ,
We first compute p((g). Since the residue field of Q,((g) is Fp2, we have

+1 +1 21
() -G, =&

Thus

By the product formula (CST’p) = —1. Therefore p({s) = (£, £i, —1).
4
Now we compute p(1 ++/2). In the local field Q,((s),

4

(Leltey (Ldiny (L)

VD) /1 \gR) Q !

3

Hence /s
1+v2,p\
(o0 )=
Since ¢1(1 4+ v/2) = 12(1 +v/2) = 1 ++v/2 and ¢1(i) = i, 12(i) = —i, we have

(1+\/§,p)4:ﬂ7 (1+\/§,p)4:ﬂ

b1 P2
1 2
By the product formula, (#)4 =1.
Therefore, p(Cs) = (&4, +i, —1) and p(1 + v/2) = (i, Fi,1). In each case, we have |p(Ep2)| =
8. O

Proof of Theorem [l for p = 3 mod 8. We know that the class number of K2 = Q((s) is 1, the
product of the ramification indices is 32 and the index [Ep2 : Ep2 N NKQX)Q] = 8 by Lemma [(5.1]

then |Cl§2| = 1 by Chevalley’s formula ([22]). Thus 2 1 hy 2 by Lemma 23] Now Proposition B4
implies 2 1 hy p, for n,m > 1. Since K, 1/Kp o is ramified at the real places, we have 2 { h,, o by
Lemma O

Lemma 5.2. Suppose p =5 mod 8.
(1) The unique prime in K10 above 2 is totally ramified in Koo oo/ K1 0.
(2) 1, e(v, K32/ Ko,2) = 28 where v runs over the places of Ko.2.
(3) 1, e(v, K21/ Ko,1) = 2° where v runs over the places of Ko.1.
(4) 1, e(v, K1,2/Ko,2) = 4 where v runs over the places of Ko .
(

Proof. (1) Note that Q2({/p)/Q2 is not Galois, so ¢p ¢ Q3P. Then the proof is the same as the
case p = 3 mod 8.

(2) We only need to consider the primes above 2 and p. Since e(p, K30/Q) = 8 and pOy 2 =
p1p2, we have e(p1, K32/Ko2) = e(p2, K32/Kp2) = 8. From (1), we can easily obtain that
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e(qo,2, K3,2/Ko2) = 4 for qo2 the only prime above 2 in Ky . Hence the product of ramification
indexes is 28.
The proofs of (3) and (4) is easy, we leave it to the readers. O

Lemma 5.3. Let p=5mod 8. Let Ao = (1 — (s)?, (s, 1+ V2) C Ky and Aoy = (1 —1)%,i) C
KOXJ. We have

(1) [Aoz2: A2 NNKS,] =32 and [Ey 2 : Eg2 NNKJ,] = 16;

(2) [AO,l : A071 n NK2><71] =8 and [EQJ : E071 N NKQX)l] =4;

(3) [Fos : Eos NNKJ,] = 2.

Proof. Denote by gy, the unique prime ideal of K, ,, above 2 for each n,m > 0. Note that
Eoo = (Cs,1+ v/2). Then Mo = A, ,) corresponds to the extension K3 2/Ko2 and Ag1 = A(q, )
corresponds to the extension Ky 1/Kp 1 as in Lemma

Since p = 5 mod 8, we have pOp 1 = p1p2 and pOp 2 = P1*P2. Note that P, P2, qo,2 are exactly
the ramified places in K32/Kp 2. For (1), we study the map as in Lemma 2.8

P = Pas), Ks2 /Ko - o2 — g X pig X i
T, p €, p €, p
T ((ml )8, (mg )87 (q0)2)8) '

By Lemmam p(Ao,g) C (N8 X ug X /J,g)Hzl, [A072 : A072 n N(K;J)] = |p(A0)2)| and [Eo)g :
Eo2 NN(K35)] = |p(Eo,2)l-
Let ¢; : Q(¢s) — Qp(Cs) the corresponding embeddings for 3, for j = 1,2. We choose ¢; so that
11(¢s) = Cs (and hence (i) = i,1(v/2) = v/2) and 15(Cs) = (5 ' (and hence 15(i) = —i,12(V/2) = v/2).

The Hilbert symbol (:v,p) by definition is ¢; * (Li (x),p) )

8 8

Bi QP(CS)
We first compute p((g). In the local field Q,((s),

2

:I:l, 7<i 1 psfl
(@1@5)82(&(&))8 =67

(C‘;lp)s - (C;j—,gp)s - Cg_p ;1'

Hence p((s) = (¢s ° ,(s ° ,=%) by the product formula.
Now we compute p(1 ++/2). In Q,(Cs),

(1 + \/ip)z’ _ (1 + \/ip) a (—Lp) _
Qp(Gs) Qp(Cs) /4 Qp /4 7
where the second equality is due to the norm-compatible property of Hilbert symbols and the fact

1 € Qp for p = 5 mod 8, the last equality is due to the fact —1 is a square but not a fourth power
in Z/pZ for p = 5 mod 8. Therefore

we have

8

1 2
(;‘/—’p) = 4.
Qp(¢s) /8
Since 11(V2) = 12(v/2) = V2 and ¢1() = i, 12(i) = —i, we have
1 2 1 2
(M) i (M) — i
B 8 Lo 8
Hence p(1 + v/2) = (&i, Fi, 1) by the product formula. In each case, we always have |p(Fo2)| =

[(p(¢s), p(1 + V/2))| = 16.
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Finally we compute p((1 — (3)?). In Q,(Cs),
o 0=EYey =Gy (0=EHA+E) Y (1 F DD
a* = ( ng )8 ( : )4_( ) ) )4_( )4'

(CS) Qp(CS) @p @p
Then ata™ = (%5)4 = 43 and Z—; = (%)4 = 44. Therefore

(at,a™) = (&4,1), (&4, 1), (1, i), (=1, £3).

— 2 _ 2
By definition, (wk =at and (wk = 15" (a™). Therefore

b P
(((1 _‘E)ap)@ ((1 _‘Jgi)27p)s) = (i, 1), (&4, -1), (1, Fi), (=1, F4).

In each case, we always have |p(Ag2)| = [{p((1 — ¢s)?), p((s), p(1 4+ v/2))| = 32. This proves (1).
For (2), we study the map

P4 1= Plan) Ko /Ko * N01 — Ha X fg X iy

T <(I,—1p)4’ (I,_Qp)AL, (%)4) '
p p Yo,

N

Let 71,72 be the embeddings corresponding to pi, ps respectively. We assume that 71 (i) = ¢ and

T2(i) = —i. Then
ip —1(Tu(i),p 1 (T2(i),p ip ,
RAE S R = =(—) =+i.
(p1>4 N ( Qp )4 2 ( Qp )4 (p2)4 !
Hence p4(i) = (+i,+i,—1) by the product formula. So [Ep1 : Eon N NKy,| = |pa(Eoa)| =
[{pa(@))] = 4.

Now we compute ps((1+4)?). Since
2 N2 . .
(0 (). = (g ()= (3D, =

(£582) s (528) e

Hence py((1 —i)?) = (£1,F1,—-1). Therefore, [Ag1 : Aot NNK ] = [(pa((1 — 1)), pa())| = 8.
This proves (2).
(3) follows from the values of the following quadratic Hilbert symbols:

Cgvp _va 1+ \/iap _17p
= =1, (—=Y=F) - = 1. 0
(Qp(és))z ( Q )2 ( Qp(¢s) )2 ( Q )2
Proof of Theorem [l for p = 5 mod 8. We first prove that 2 || h3 2,2 || ha,1 and 21 hy o.
We apply Gras’ formula (21]) to the case
K32/Ko2, C={(cl(ds2)), D= (ds2)

where (,, , is the unique prime ideal of K, ,, above 2. Then Ap = Ag2 as in Lemma By
the above computation and Lemma 23] As 2 = (cl(g3,2))(2). Note that C is invariant under the
action of G := Gal(K32/Koz2). We have Agy = Af,. Chevalley’s formula (2.2) and the above

computation imply that |Asz 2| = |A§2| = 9.

We always have

we have
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Similarly, applying Gras’ formula to the case

Ka1/Ko1, C=(cl(d2,1)), D = (q2,1)

shows that Az 1 = (cl(qz,1))(2). In particular, As ; is invariant under the action of Gal(K21/Ko 1).
Apply Chevalley’s formula to Ko 1/Ko 1, we obtain |As 1| = 2.

By Applying Chevalley’s formula to the extension K1 2/Kp 2 and Lemma [2Z3] we have 2 { hq o.
Hence 21 hy 1 by Lemma

We have 2 || hym for n > 2,m > 1 by Proposition B4 and 2 { hy,, for n = 1,m > 1 by
Proposition

It remains to prove that 21t h,, 9. The proof consists of three steps:

Step 1: Let € be the fundamental unit of Q(,/p). We show that (#) =-1.
D /2

Write € = a+g‘/ﬁ,a,b € Z. Then
€D\ _ (a/2,\P\ _ [a/2,— ~ (a/2
((\/1_92)?)2_( (\/ﬁ)p)z_( D p)z_ <7)

It is well-known Ng(_z)/q(€) = (§)? —p(4)* = —1. Since (£)? = —1 mod p and p = 5 mod 8, we

1

have (%2) = (%)% = —1 mod p.
Step 2: We show that [Ey, o : E,o NNK, o] =4 for each n > 1.
Consider the map as in Lemma 2.8
p:Eno — p2 X g X pio

1 1 1

7 b 7w
" (Iap ) 7(17,?1 ) 7(%? ) 7
oo, /2 (pz—n) 2 qno /2

where 0o, is the real place of K, ¢ such that oon(p%") < 0. We know [Eno: EpoN NK;O] =

Ip(Eno)| and p(En o) C (¢ x o x ()II=L In particular, |p(E,. )| < 4.
Since —1,€ € E, . It is enough to prove that |{p(—1), p(¢€)}| = 4. By Step 1, we have

(e,p%") NE —pznll) - —\/73) — 1
)2\ ) /e VOR
Therefore, p(e) = (£1,—1,F1). Since p(—1) = (1,1, —1), we have |[{p(—1), p(€))| = 4 and hence
[p(Eno)| = 4.
Step 3: We prove 21 hy, o for any n > 1.
We prove it by induction on n. The case n = 1 is well-known. Assume that 2 { h,, o. The product

of ramification indices of K,,41,0/Kp,0 is 8. Using the result in Step 2, Chevalley’s formula (2.2))
for the extension K, 4+1,0/Kp,0 and Lemma 273 then imply 2 { hy41.0. O

5.2. The case p = 7 mod 16. The main purpose of this subsection is to prove Theorem [[T|(3).
We first give a brief description of the proof.

e Apply Gras’ formula [2I) inductively to the extension K, o/K,—_1,0 to show that A, o
is generated by the unique prime above 2. Then apply 21 to K, 1/K, o to show that
Ap.1 equals the 2-primary part of (classes of primes above 2). Next we apply Chevalley’s
formula ([2.2) to the extensions K3 1/K; 1 and K3 1/K;1 1 to deduce Az = As 1 2 7/27 %
Z/27. Proposition 3.2 then implies A, 1 = Z/2Z x Z/2Z for n > 2. Finally from this one
can get A, o = Z/2Z for n > 2.

e Apply &I inductively to Ki /Ko m to show that Ay ., is a quotient of Z/2™~17Z, then
use Kida’s A-invariant formula to get |Aj ,,,| > 2™~ 1. This leads to Ay, = Z/2™ 17 for
any m > 1.
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For each n > 1, K, o has two real places. Let oo, be the real place such that oo, (pz%) < 0.
Then oo, is ramified in K,,4+1,0/Ky 0, while the other real place is unramified in K,+1,0/Kpn,o-

The prime p is totally ramified as pO,, o = pf:o in K, o, where p,, o = (p%") Since p is inert
in Ko.1, Pn,o is inert in K, 1. Write p,, 0On,1 = ppn,1. The prime po1 = (p) is totally ramified in
Koo,l/KO,l-

Since (x + 1)?" — p is a 2-Eisenstein polynomial, 2 is totally ramified as 2050 = q%TO in Ky, .
Since 2 splits in Q(v/—p)/Q, qn,o splits as q,,00,,1 = qnqu;hl in Ky 1/Ky,0 for each n > 1. The
primes q1,1 and q} ; are totally ramified in Kwo,1/Ko,1-

The prime 2 is also totally ramified as 20¢ ., = qgj@m in Ko m, where qom = (1 — (am+1)Og m.
The prime qo., splits as 4o,mO1,m = ql,mq’lﬂn in Ky, for each m > 1.

Since 2 { h1,0, p1,0 is principal. If 7 = u + v,/p is a generator of p; o, we must have N(7) =
u? — pv? = 2, since —2 is not a square modulo p. If 7 is a totally positive generator of p; ¢, then
%2 = ¥ with k odd, where € is the fundamental unit of K 1,0- Replace the generator 7 by T
We may assume that § =e. So Ey = (-1, §>

Lemma 5.4. The class number hyy of K11 = Q(\/p,i) is odd and Ey; = (%ﬂ,z)

Proof. Apply Chevalley’s formula to the extension K 1/Ko 1 and Lemma 23] one has 21 hy ;.
By [FFT93| Theorem 42, Page 195],

2
(B <%,i>] —1or2.

71,2

Note that %7 is a unit and [(5,4) : (%, 4)] = 2, we must have E1 1 = ({75,19). O

Lemma 5.5. We have

(1) (M)Q =—1 and (777\/]3)2 =-1;

pl,O q1,0
(2) [Ero: Bro NNKY ] =2;

(3) [E171 : El,l n NK?T,I] =4 and [El,l : E171 n NK2X71] =1.

Proof. (1) Since m = u + v,/p is totally positive, we have u > 0, u? — pv? = 2 and 2t uv. Note
that 2 is a square modulo v, so v = 1 mod 8. Then u? = 9 mod 16 since p = 7 mod 16. In other
words, u = £3 mod 8. We have

Gl (50 (59, ()= () - ()

T, /D

The fourth equality is due to the quadratic reciprocity law. We have (
001

Lﬁ)

q1,0

(2) Since the infinite place ooy is ramified, —1 is not a norm of K3 . For the fundamental unit

2
%, we have

) =1as mis
2

totally positive, thus ( = —1 by the product formula.

(Bo) = (B0) _ (2o0) 2 (20) -

By the product formula,

71,2
(—7’\/5) =1.
qio0 /2

Then %2 is a norm of K3 o by Hasse’s norm theorem. This proves (2).
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(3) We need to study the map
P B — g X g X iy

o= (5D, (59), (55),)
P 74N qun /4 N gy /4
Then p(Fy1) C (pa X pa x pa)11=" and [Eyq : By 1N NK ] = [p(E11)l
We first compute p(i). Since p = 7 mod 16 and the residue field of py,; is Fj2, we have

i\ . N2 -1 R
(Qp(\/l_ii))Al o (Qp(f;ﬁ,i))4 =1 =1.

Thus )
(590),=1
P11 /4 '
Note that the localization of K11 at q1,1 is Q2(/p, ) = Q2(i). Note that \/—p € Q3. Since

ii i, =1\ /i,—i i,—1 ivi
(@2(i))4 - (Qg(i))4(<@2(i))4 - (Qg(z’))4 - (Qg—(z))z =1

(£)4: ( 511 )47 if p =7 mod 32;

we have

(5, (5, - | B (8
2 > (7(@2(2') )4:((@2’(2_))4, if p = 23 mod 32.

Applying the product formula to the quartic Hilbert symbols on Q(4) gives

(52—1(:))4 B (éTl(lz)); =it =
1,3 i3\l s
(@2(i))4: (Q3(i))4 =i+ =-L

t,\/DP\ N .
Therefore, (Qg(i))4 = —1 and we have p(i) = (1,-1,—1).

- 2

Next we compute p(17). By (1), we have 7 = —1 mod p1,0. Since p = 7 mod 16, =

2_ 2_ 2_
1 mod p;1,9. Hence (ﬂ-p’ \/ﬁ) = 1. Since (1 —I—i)pTl = (20)"= Y = 25 = —1mod p, we have
1,1 /4

143

(AP — 1 s
P11 4
(5l
P11 /4
T VP

To compute ( ) , we first compute its square:
4

q1,1

(), () _ (mal) (121
q1,1 4 q1,1 2 qi1,1 /2 q1,1 2’
Note that Q2(/p) = Q2(i). By part (1) of Lemma [5.5], we have
1= ()= (@)= (),
qo,1 /2 Q2(y/p)/ 2 qi,1 /2
Note that /—p = +3 mod 8. So we have the following equality of quadratic Hilbert symbols:
(M) _ (% v—p) _ (277 V—P) _
Q2(i) /2 Q2(i) /2 Q2 /2 '
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Therefore

(B (S
i1 /4 q/1,1 4

By the product formula we must have p(13;) = (—1,£1,F1). Hence |p(E1,1)| = 4. This implies
[El,l : E171 n NK;I] =4.

To compute [E1 1 : E11 N NK;)l], we need to consider the following map

Pl Ern — po X g X fig
= (D), (20), (50),)
P11 /2 qi,1 /2 qi,1 /2

Then p' = p* by Proposition2.I(7). Thus p'(i) = p(i)* = (1,1,1) and p'($5) = p(55)* = (1,1,1).

Therefore [El,l : E171 n NKQX)l] = |p/(E171)| =1. ]

Proposition 5.6. We have
(1) Apo = (cl(qno)) forn >1 and Agg = Z/2Z;
(2) An = (cl(an,1), cl(g;,1))(2) for n > 2.

Proof. (1) We prove this by induction. The case n = 1 is well-known. Suppose the result holds for
n. We apply Gras’ formula (1)) to

Kp1,0/Kn0,C = (l(@n+1,0)); D = (Gn+1,0)-

Note that N(C) = (cl(qn,0)) = An,o by the assumption. The product of ramification indices is 8.
Consider the map

P =PD,Kni1.0/Kno * Ap > f2 X 2 X 2
1 1 1
P P P
(J?,p ) , (:Z?, j% ) 7 (I, j% ) .
XOn 2 pn,O 2 qn,0 2

We have [p(Ap)| = [Ap : ApNNK Y, o] and p(Ap) C (112 % o % po)1I=1 | in particular, [p(Ap)| < 4.
Notice that Ap D (m, %2, —1).
Since oo, (p7) < 0,

—1.pam
(ﬂ) - _1.
oon, /2

By the norm-compatibility of Hilbert symbols,

(555), = (52—), == (D), =

Then p(—1) = (—1,—1,1). Since 7 is totally positive,

1
(M) -1
ocon /2

By the norm-compatibility of Hilbert symbols and the above Lemma,

(ﬂ,p%") - (Z (—1)"’1\/5) _
Pno /2 P10 2

Hence p(m) = (1,—1,—1). Therefore |p(Ap)| > |{p(r), p(—1))| = 4. This shows that |p(Ap)| = 4.
Then Gras’ formula and Lemma[23ltell us Ay4+1.0 = (cl(gn+1,0))(2). Note that q%rjrl_o = (1,0 = (1),
SO <C1(qn+170)>(2) = <Cl(qn+170)>. By induction, An+170 = <Cl(qn+170)>.
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In particular, As o is invariant under the action of Gal(Ks3,0/K1,0). Since Eq = (-1, ”72>, and
[E1o: E10N NK;O] = 2 by the above Lemma. Applying Chevalley’s formula (Z2]) to K20/K1 0
gives Ag o = Z/2Z.

(2) We apply Gras’ formula to

Kﬂ,l/Kn,Ov C= <C1(qn71)7 Cl(q;,l»v D= <qn,17 q;L,1>'

Then NC' = (cl(qn,0)) = An,0 by (1). Only the two infinite places are ramified in K, 1/K,, 0, s0
—1 is not a norm. This shows that the index [Ap : Ap NNK',, ;] > 2. By Gras’ formula and

Lemma[2Z3] A, 1 = <cl(qn71),c1(qﬁl71)>(2). O
Theorem 5.7. Forp =7 mod 16, we have Ap1 =2 Z/2ZXZ/2Z and A, o =2 Z/27 for anyn > 2.

Proof. The extension Ko 1/K7 1 satisfies RamHyp and Gal(K, 421/Ky,1) is cyclic of order 4 for
each n > 1. By Proposition B.2] to show A, 1 = Z/2Z x Z/2Z, it suffices to show Ag; = A3 =
Z7)27 x 7./ 2.

Let G211 = Gal(KQJ/KLl). By PI‘OpOSitiOHm7 A271 = <Cl(q271),Cl(q/271)>(2) = Agil Since h/l,l
is odd, cl(qz2.1)? = cl(q1,102,1) has odd order. In other words, Az ; is a quotient of Z/27Z x Z/2Z.
Note that Ap; = Agi’l. The product of ramification indices of K3 1/K7 1 is 8. By Lemma [5:5 and
Chevalley’s formula ([2:2) for K»1/K7 1, we obtain |4z 1| = |A§il| =4. So Ayy 2 7Z)27 x 7] 27.

By Proposition 5.6, A3 1 = Agcj’l where G371 = Gal(K3,1/K1,1). The product of ramification
indices of K3 1/K7,1 is 64. By Lemma [5.5 and Chevalley’s formula for K3 1/K1 1, we get |As 1| =
|A§i‘1| = 4. Since the norm map from Az, to As; is surjective by Lemma 20 we must have
As1 = 7)27 x Z,)2Z.

Now we compute A, o. Since K, 1/K, o is ramified at the real places, the norm map from A4, ;
to Ay, is surjective by Lemma [Z5] In particular, 4, ¢ is a quotient of Z/2Z x Z/2Z. We know
that A, ¢ is cyclic by Proposition[5.6l Since the norm map from A, ¢ to As o = Z/2Z is surjective,
we must have A, o = Z/2Z for n > 2. O

To compute the 2-class group of K ,, for m > 1, we first note that K, ,, is the m-th layer of
the cyclotomic Zs-extension of K ;.

Proposition 5.8. For p =7 mod 16, we have A1 = (cl(q1,m))(2) for m > 1.

Proof. We first reduce the result to the case m = 2. Suppose A12 = (cl(q1,2))(2). Note that
K1,00/Ky1 is totally ramified at qq,; and g ;, and unramified outside q;; and q7 ;. Applying
Gras’ formula (1)) to

Ki2/K1,1, C1=(cl(q1,2)), D1 =(q1,2)
gives
[AD1 : AD1 N NK1X)2] = 2.
Next we apply Gras’ formula to
Ki3/K12, C2 = (cl(q1,3)), D2=(q1,3)-

Note that N(C)(2) = A 2. To prove A 3 = Ca, we need to prove that [Ap, : Ap, "NK 3] = 2 by
Lemma 23] Note that K12 = K1.1(v/—i) and K1 3 = K;1.2(1/(s). We need to study the following
two maps:

P1 = PDy K1 o/Kia P ADy — p2 X o

T — ((2;,17_12.)27 (;2’1)_;)2)




¢-CLASS GROUPS OF FIELDS IN KUMMER TOWERS 19

and
P2 = PDy Ky 5 /Kyo P NDy — 2 X pi2

oo ((29),(58),).

We have |p2(A2)| = [Ap, : Ap, NNK;] < 2 by Lemma 28 Note that Ap, C Ap,. By the

norm-compatible property of Hilbert symbols, (g;’ Cs) = (g;’ —z) . So the following diagram is
1,272 1,1 /2
commutative:

Thus 2 = [p1(Ap,)| < [p2(Ap,)| < 2 and [Ap, : Ap, N NK{'3] = 2, which implies that A; 3 =
(cl(g1,3))(2) by Lemma[Z3l Repeating this argument, we get Ay ., = (cl(q1,m))(2) for m > 2.

Consider the case

K/F = Ki3/Koz, C=(cl(d1,2)), D= (q1,2)-

Note that C' is a Gal(K1 2/ Ko 2)-submodule of A; 2, since for o € Gal(K1,2/Koz2), 0(q1,2)q1.2 =
90,201,2 = (1—(s)O1,2, in other words, o(cl(q1,2)) = cl(q1.2) . If we can show [Ap : ADﬁNKfQ] =
2, then by Gras’ formula (2.I) and Lemma 23] we have A; 2 = (cl(q1,2))(2).

Note that Ap = (1—(g, (s, 1+ \/5) and the ramified places in K 2/Kj 2 are pg 2 and p(m, where
0,200 = Qo 2. By Lemma 28 for the map

P = PD,Ki /Koy * Ap — p2 X 2
( 7 ) ’ ( ; ) ’
Po,2/2 p0)2 2

we have |[p(Ap)| = [Ap : Ap NNK ] < 2. To show |p(Ap)| = 2, it suffices to show that p is not
trivial. Let us compute p(1 — (g). For p = 7 mod 16, the conjugate of (s over Q, is (g '. By the
norm-compatible property of Hilbert symbols, we have
(1 - Cs,p) _ (1 - C&p) _ ((1 —G)(1 — Cg’l)’p) _ (2 +Gs +<§1,p)

Po,2 2 @p(C8) 2 Qp 2 @p 2

By Hensel’s Lemma, we have
(2 + <8 + <8_15p

Qp
Notice that (Ci6 + (15)> = 2+ G + (5 ' Since p =7 mod 16, Frob, (Cis + Ge) = ¢l + G =
—(C16 + (3g'), where Frob,, is the Frobenius element of Gal(Q,/Q,). Thus (16 + (7' & Q, and we

have (%CE’I))Q =—1. O

Theorem 5.9. For p=7 mod 16 and m > 1, Ay, £ Z/2m 1.

)221@2+C8+C8_1m0dpisasquare <:>2+C8+<8_1€(Q1>7<)2'

Proof. Note that A;; is trivial and q%jr,;:l = q11. We have A1, = (cl(q1,m))(2) is a quotient
of Z/2m=Z. Since him | hims1 by Lemma 25 if [Ay,,| < 27! for some m, we must have
|A1 k| = |A1 k41| for some k. Then |Ay,,| = |A1| for any n > k by Proposition B2 But Kida’s
formula [Kid79, Theorem 1] shows that the A-invariant of the cyclotomic Zs-extension of Q(1/=p)
is 1. In particular, the 2-class numbers of Q(y/—p, (om+1 + C;,,}H) are unbounded when m — oco.
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Thus the 2-class numbers of Q(y/=p, {am+1) = K1 ,,, are also unbounded by Lemma[2Z5l We get a

contradiction. 0
Proof of Theorem [I1l(8). Theorem [[T(3) is just the combination of Theorem (.7 and Theorem
0.9 ]

5.3. Congruence property of the relative fundamental unit. We are now ready to prove
Theorem We assume p = 7 mod 16 and use the same notations as in § 5.2l

To prove this theorem, we need an explicit reciprocity law for a real quadratic field F. We view
F C R by fixing an embedding. For a prime ideal p with odd norm and v € Op prime to p, define

Np—1

the Legendre symbol {%] € {+£1} by the congruence {%} =~ = mod p. For coprime v,8 € Op

vy (5)
with (2,6) = 1, define [3] i=TT,j; [2] " . So by definition [3] =1if 6 € OF.
For 7,6 € Op \ {0}, define

sgn(y)—1 sgn(8)—1
2 2

{’77 6} = (_1)
where sgn(z) = 1if £ > 0 and sgn(z) = —1 if © < 0. Note that {v, d1}{~,d2} = {7,102}

Theorem 5.10. Assume that 1,61, 72,02 € Op have odd norms, v1 and 61 are coprime, 2 and
02 are coprime, and 1 = 72,01 = 6 mod 4. Then

[v_] [5_] H H = {71, 801 81 92, 6217, 34}

1 71 V2
where & is the conjugate of € € F.

Proof. This follows from [Lem05, Lemma 12.12, Lemma 12.13, Lemma 12.16] directly. O

Proof of Theorem[L.2 (1) Note that Eso/E1,0 is an abelian group of rank 1. We claim that
FEs0/FE1, is torsion-free. Otherwise, there exists u € Eq o\ E1 o such that v/ € Ey o for some j > 2.
Then K2 = Kj,0(u). The norm of u respect to the extension K /K1, is uCu = (u? € Ej for
some ¢ € ;N K29. So ¢ = +1. Thus u? € Ey o and this implies that K5 /K o is unramified at
p. This contradicts to the fact that Ky o/K1 o is ramified at p. This proves the claim.

Let n € Es o such that its image in E5¢/F1 o is a generator of Eso/E1 . Then clearly Es o =
(n,e,—1). By Lemma 53, € € NK;. Let G = Gal(K2,0/K1 ). Since Ay = (q2,0) and gz, is a
G-invariant fractional ideal, by [Gre, Proposition 1.3.4], Ey ¢ N NKQXV0 = NFE3 and in particular
€ € NEyo. Therefore we must have N(+ne*) = e. Replacing 7 by sgn(n)ne®, then 7 is totally
positive since e is totally positive, N(n) = € and Es 9 = (1, €, —1).

(2) We first reduce it to the case y’ = 7. Suppose the result holds for n. For any 1’ € E3 ¢ such
that N(n') = ¢, we can write 7’ = sgn(n’)n*e® with k = 1 — 2s. Firstly, one easily see that e =
+1 mod \/p. We claim that ¢ = 1 mod /p. Since ¢ = N(n) = 17, we have ¢ = nij = n? mod /P
Therefore, € is a square in Oz/(¥/p) = F,. Because —1 is not a square in F),, we obtain € =
1 mod \/p. Then ' = sgn(n’)(—1)F = —sgn(n’) mod ¢/p. Write n = a + By/p with o, 8 € Z[,/D).
By the assumption we have q || @ and q 1 5. It is easy to check that for odd k, q || a also where
n* = i + B /P with ay, Bx € Z[\/p]. Thus we have vq(Tr (1)) = vq(2e’au) = vq(2e%a) = 3.

From now on we prove the result holds for n = o + 8¢/p. Write « = a +b\/p and 8 =c+d,/p
with a,b,¢,d € Z. Since the infinite place is ramified in Kz, we have N, ;/o(n) = 1. Hence
Nk, ,/0(n) = a* =1 mod /p. Since p =7 mod 16, we have = a = +1 mod /p.

Let G = Gal(K3,0/K2,0). By Proposition 5.6 and Theorem B2 tell us [As o] = |AS | = [A2,0| =
2. Applying Chevalley’s formula (22)) on K3 0/Kao gives [Ea : NK?,X)O N Es,0] = 4. This implies
((2) (20, (%32)) (1,1, Theretore (7-0) = (Y2} = 1 by the toraly

002 (v/p) 42,0 (v/p) q2,0

positivity of n and the product formula. Hence 7 is not a square modulo ¢/p and we must have
n = —1mod ¥p.
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Write a = wtag with 7§ ag, recall that 7 is the totally positive generator of q such that e = §
Now t = vq(Tr(3)) = vq(Tr(n)) — 2, so our goal is to prove t = 1. Note that a and «q are positive.
Write € = 2 +y,/p, ™ = v+ vy/p. By Lemma[5.5] u and v are both odd and v = 1 mod 8. From
€= § and N(7) = u? — pv? =2, we obtain 8 ||  =u? — 1 =pv? + 1 and y = £3 mod 8.
If y = 3mod8, then ¢ = —,/pmod 4. Take (ag, —/p, 2, €) in Theorem (.I0, since ag >
0, /pe’ > 0, we have

2] 21 - e -
Since a? — \/pB% = ¢, we have
2287 [2]

Qo Qo Qo

By definition, [%} = 1. Combine the above two equalities, [ 0 } = 1. By Lemma [0

[L] = (M> = —1. Thus we have v
2

e
e 25 ] 2]

which means that ¢ is odd in this case.
If y=—3mod8, then e ! =2 — yy/P with —y = 3 mod 8 and N(n~') = e~ 1. Repeating the

above argument, we obtain v, (Tr(%) is odd. Let 7 = o — B¢/p. We have Tr(n~') = Tr(e ') =

e 'Tr(m) = e 1Tr(n). Therefore t = ’Uq(m) = Uq(%l)) +og(e7t) = vq(Tr(g 1)) is also odd.
Finally let us prove t = 1. Recall that n = a + b\/p + (¢ + d\/p) /p with a,b,c,d € Z. Since t is
odd, we have 7 | a + b\/p and 7 { ¢+ d,/p. Then ¢ # d mod 2. From N(n) = € = 2 + y,/p we have
a? + pb* — 2cdp = x. Assume t > 3, i.e. 27 | a + by/p. We must have 2 || a and 2 || b or 4 | a and
4 | b. In both cases, x = —2c¢dp mod 8. Since 8 | z, we have 4 | ed. But exactly one of ¢ and d is
odd, y = 2ab — c® — pd? = d? — ¢ = £1 mod 8, which is a contradiction to y = £+3 mod 8. Thus
t=1. O
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