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ℓ-CLASS GROUPS OF FIELDS IN KUMMER TOWERS

JIANING LI, YI OUYANG, YUE XU, AND SHENXING ZHANG

Abstract. Let ℓ and p be prime numbers and Kn,m = Q(p
1
ℓn , ζ2ℓm ). We study the ℓ-class

group of Kn,m in this paper. When ℓ = 2, we determine the structure of the 2-class group of
Kn,m for all (n,m) ∈ Z2

≥0
in the case p = 2 or p ≡ 3, 5 mod 8, and for (n,m) = (n, 0), (n, 1)

or (1, m) in the case p ≡ 7 mod 16, generalizing the results of Parry about the 2-divisibility of
the class number of K2,0. We also obtain results about the ℓ-class group of Kn,m when ℓ is
odd and in particular ℓ = 3. The main tools we use are class field theory, including Chevalley’s
ambiguous class number formula and its generalization by Gras, and a stationary result about
the ℓ-class groups in the 2-dimensional Kummer tower {Kn,m}.

1. Introduction

In this paper we let ℓ and p be prime numbers. For n and m non-negative integers, let Kn,m =

Q(p
1
ℓn , ζ2ℓm). Let An,m and hn,m be the ℓ-part of the class group and the class number of Kn,m.

The aim of this paper is to study the ℓ-class groups of Kn,m when n and m vary.
First let us assume ℓ = 2. It is well-known that the class number h1,0 of Q(

√
p) is odd by the

genus theory of Gauss. In 1886, Weber [Web86] proved that the class number h0,m of Q(ζ2m+1) is
odd for any m ≥ 0. In 1980, by a more careful application of genus theory for quartic fields, Parry
[Par80] showed that A2,0 is cyclic and

(i) If p = 2 or p ≡ 3, 5 mod 8, then 2 ∤ h2,0.
(ii) If p ≡ 7 mod 16, then 2 ‖ h2,0.
(iii) If p ≡ 15 mod 16, then 2 | h2,0.
(iv) If p ≡ 1 mod 8, then 2 | h2,0. Moreover, if 2 is not a fourth power modulo p, then 2 ‖ h2,0.

For p ≡ 9 mod 16, Lemmermeyer showed that 2 ‖ h2,0, see [Mon10]. For p ≡ 15 mod 16, one can
show that 4 | h2,0 using genus theory (unpublished manuscripts by the authors and Lemmermeyer
respectively).

Our first result of this paper is

Theorem 1.1. Let p be a prime number, Kn,m = Q(p
1
2n , ζ2m+1). Let An,m be the 2-part of the

class group and hn,m the class number of Kn,m.
(1) If p = 2 or p ≡ 3 mod 8, then hn,m is odd for n,m ≥ 0.
(2) If p ≡ 5 mod 8, then hn,0 and h1,m are odd for n,m ≥ 0 and 2 ‖ hn,m for n ≥ 2 and m ≥ 1.
(3) If p ≡ 7 mod 16, then An,0

∼= Z/2Z, An,1
∼= Z/2Z× Z/2Z for n ≥ 2, and A1,m

∼= Z/2m−1Z
for m ≥ 1.

Let p ≡ 3 mod 8 and ǫ = a + b
√
p be the fundamental unit of Q(

√
p). Parry [Par80] and

Zhang-Yue [ZY14] showed that a ≡ −1 mod p and v2(a) = 1. Applying Theorem 1.1, we obtain
the following analogue of their results.

Theorem 1.2. Assume p ≡ 7 mod 16. Let ǫ be the fundamental unit of Q(
√
p).

(1) There exists a totally positive unit η of Q( 4
√
p) such that N(η) = ǫ and the group of units

O×
Q( 4

√
p) = 〈η, ǫ,−1〉.
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(2) For any unit η′ ∈ N−1(ǫ) in Q( 4
√
p), one has vq(TrQ( 4

√
p)/Q(

√
p)(η

′)) = 3 and η′ ≡ −sgn(η′) mod
4
√
p, where q is the unique prime of Q(

√
p) above 2 and sgn is the signature function.

Remark 1.3. (1) We may call the unit η the relative fundamental unit of Q( 4
√
p). The first part

of this theorem is due to Parry, see [Par80, Theorem 3]. We include a proof here for completeness.
(2) For η′ ∈ O×

Q( 4
√
p) such that N(η′) = ǫ, we know η′ is either totally positive or totally negative

since ǫ is totally positive. Therefore the sign of η′ is well-defined.

Now assume ℓ is odd. Recall that ℓ is regular if ℓ ∤ h0,1, the class number of Q(ζℓ). We have the
following result:

Theorem 1.4. Assume ℓ is an odd regular prime, and p is either ℓ or a prime generating the
group (Z/ℓ2Z)×. Then ℓ ∤ hn,m, the class number of Kn,m = Q(p

1
ℓn , ζℓm) for any n,m ≥ 0.

For the particular case ℓ = 3, the following results about the 3-class groups of Q( 3
√
p) and

Q( 3
√
p, ζ3) were obtained by several authors:

(i) ([Hon71]) If p = 3 or p ≡ 2 mod 3, then 3 ∤ h1,1 and 3 ∤ h1,0.
(ii) ([Ger76] ) If p ≡ 1 mod 3, then rank3A1,0 = 1 and rank3A1,1 = 1 or 2.
(iii) ([Aou18]) If p ≡ 4, 7 mod 9, then A1,0

∼= Z/3Z and

A1,1
∼=




Z/3Z if

(
3
p

)

3
6= 1,

(Z/3Z)2 if
(

3
p

)

3
= 1.

(iv) ([C-E05], [Ger05]) If p ≡ 1 mod 9, then rank3A1,1 = 1 if and only if 9 | h1,0.

We refer to [Ger05] and [Aou18] for more details. However, hn,m and An,m for general n and m
was rarely studied in the literature as far as we know. We have the following result in this case:

Theorem 1.5. Let p be a prime number. Let An,m be the 3-part of the class group and hn,m the

class number of Kn,m = Q(p
1
3n , ζ3m).

(1) If p = 3 or p ≡ 2, 5 mod 9, then 3 ∤ hn,m for n,m ≥ 0.

(2) If p ≡ 4, 7 mod 9 and the cubic residue symbol
(

3
p

)

3
6= 1, then An,m

∼= Z/3Z for n ≥ 1,

m ≥ 0.

Remark 1.6. A. Lei [Lei17] obtained the growth formula of class numbers in Zd−1
ℓ ⋊Zℓ-extensions

for an odd prime ℓ. Under the conditions in Theorem 1.4 or 1.5, the Kummer tower K∞,∞/K0,1

satisfies the conditions in Lei’s paper. Then by [Lei17, Corollary 3.4], one has for each m, there
exist integers µm and λm such that

vℓ(hn,m) = µmℓn + λmn+O(1) for n ≫ 0.

Theorem 1.4 and 1.5 thus imply that the invariants µm = λm = 0 for all m.

To prove our results, we need to use class field theory, including Chevalley’s ambiguous class
number formula and its generalization by Gras. The most technical part of our paper is a stationary
result of ℓ-class groups in a cyclic Z/ℓ2Z-extension under certain conditions, and its application
to the study of ℓ-class groups in the 2-dimensional Kummer tower {Kn,m}. We emphasize that
the stationary result could be used to other situations. Due to the computational nature of our
results, we impose conditions to simplify computation. It would be of interest to study other cases,
for example, replacing p by some positive integer with 2 or more prime factors.

The organization of this paper is as follows. In §2 we introduce notations and conventions
for the paper, and present basic properties of the Hilbert symbols and Gras’ formula on genus
theory. In §3, we prove our stationary result on ℓ-class groups in certain cyclic ℓ-extensions by
using argument from Iwasawa theory, and then prove a stationary result about the ℓ-class groups
of Kn,m. §4 is devoted to the proof of results for the easier case that ℓ is odd and §5 for the more
complicated case ℓ = 2.



ℓ-CLASS GROUPS OF FIELDS IN KUMMER TOWERS 3

2. Preliminary

2.1. Notations and Conventions. The numbers ℓ and p are always prime numbers. The ℓ-Sylow
subgroup of a finite abelian group M is denoted by M(ℓ). ζn is a primitive n-th root of unity and
µn is the group of n-th roots of unity.

For a number field K, we denote by ClK , hK , Ok, EK and cl the class group, the class number,
the ring of integers, the unit group of the ring of integers and the ideal class map of K respectively.
For w a place of K, Kw is the completion of K by w. For p a prime of K, vp is the additive
valuation associated to p.

For an extension K/F of number fields, v a place of F and w a place of K above v, let
ew/v = e(w/v,K/F ) be the ramification index in K/F if v is finite and ew/v = [Kw : Fv] if v is
infinite. We say that w/v is ramified if ew/v > 1. w/v is totally ramified if ew/v = [K : F ], in this
case w is the only place above v and we can also say that v is totally ramified in K/F . Note that
for v infinite, w/v is ramified if and only if w is complex and v is real, and in this case ew/v = 2.
Hence an infinite place v is totally ramified if and only if K/F is quadratic, Fv = R and Kw = C.
When K/F is Galois, then ew/v is independent of w and we denote it by ev.

Denote by NK/F the norm map from K to F , and the induced norm map from ClK to ClF . If
the extension is clear, we use N instead of NK/F .

When K = Kn,m = Q(p
1
ℓn , ζ2m+1), we write Cln,m = ClK , hn,m = hK , On,m = OK and

En,m = EK for simplicity. The group An,m is the ℓ-Sylow subgroup of Cln,m.

2.2. Hilbert symbol. Let n ≥ 2 be an integer. Let k be a finite extension of Qp containing µn.
Let φk be the local reciprocity map φk : k× −→ Gal(kab/k). Given a, b ∈ k×, the n-th Hilbert
symbol is defined by

(a, b
k

)

n
=

φk(a)(
n
√
b)

n
√
b

∈ µn ⊂ k.

The following results about Hilbert symbol can be found in standard textbooks in number theory,
for example [Neu13, Chapters IV and V].

Proposition 2.1. Let a, b ∈ k×.

(1)
(a, b

k

)

n
= 1 ⇔ a is a norm from the extension k( n

√
b)/k;

(2)
(aa′, b

k

)

n
=
(a, b

k

)

n

(a′, b
k

)

n
and

(a, bb′
k

)

n
=
(a, b

k

)

n

(a, b′
k

)

n
;

(3)
(a, b

k

)

n
=
(b, a

k

)−1

n
;

(4)
(a, 1− a

k

)

n
= 1 and

(a,−a

k

)

n
= 1;

(5) Let ̟ be a uniformizer of k. Let q = |Ok/(̟)| be the cardinality of the residue field of k. If

p ∤ n, then
(̟,u

k

)

n
= ω(u)

q−1
n where ω : O×

k → ζq−1 is the unique map such that u ≡ ω(u) mod ̟

for u ∈ O×
k .

(6) Let M/k be a finite extension. For a ∈ M×, b ∈ k×, one has the following norm-compatible
property (a, b

M

)

n
=
(NM/k(a), b

k

)

n
.

When k = R, µn ⊂ R if and only if n = 1 or 2. For a, b ∈ k× define

(a, b
k

)

2
=

{
−1, if a < 0 and b < 0;

1, otherwise.

When k = C, define
(a, b

k

)

n
= 1 for any a, b ∈ k×.

The following is the product formula of Hilbert symbols, see [Neu13, Chapter VI, Theorem 8.1].
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Proposition 2.2. Let K be a number field such that µn ⊂ K. For any place v of K, set
(a, b

v

)

n
:=

ι−1
v

((a, b
Kv

)

n

)
where ιv is the canonical embedding of K → Kv. Then for a, b ∈ K×, one has

∏

v

(a, b
v

)

n
= 1,

where v runs over all places of K.

2.3. Three useful Lemmas.

Lemma 2.3. Suppose K/F is a cyclic ℓ-extension with Galois group G and C is a G-submodule

of ClK . Then ℓ ∤ |(ClK/C)G| implies that ClK(ℓ) = C(ℓ). In particular, ℓ ∤ |ClGK | implies that
ℓ ∤ hK .

Proof. Consider the action of G on (ClK/C)(ℓ). The cardinality of the orbit of c ∈ (ClK/C)(ℓ) \
(ClK/C)(ℓ)G is a multiple of ℓ. Thus |(ClK/C)(ℓ)| ≡ |(ClK/C)(ℓ)G| mod ℓ. Hence ℓ ∤ |(ClK/C)G|
implies (ClK/C)(ℓ) = 0 and then ClK(ℓ) = C(ℓ) by the exact sequence 0 → C(ℓ) → ClK(ℓ) →
(ClK/C)(ℓ). �

Lemma 2.4. Let Kn/K0 be a cyclic extension of number fields of degree ℓn. Let Ki be the unique
intermediate field such that [Ki : K0] = ℓi for 0 ≤ i ≤ n. If a prime ideal p of K0 is ramified in
K1/K0, then p is totally ramified in Kn/K0.

Proof. Let Ip be the inertia group of p. Then K
Ip
n = Ki for some i and K

Ip
n /K is unramified at p.

Since K1/K0 is ramified at p, we must have K
Ip
n = K0. In other words, p is totally ramified. �

Lemma 2.5. Suppose the number field extension M/K contains no unramified abelian sub-extension
other than K. Then the norm map ClM → ClK is surjective. In particular, hK | hM .

Proof. This is [Was97, Theorem 10.1]. �

2.4. Gras’ formula on class groups in cyclic extensions.

Theorem 2.6 (Gras). Let K/F be a cyclic extension of number fields with Galois group G. Let
C be a G-submodule of ClK . Let D be a subgroup of fractional ideals of K such that cl(D) = C.
Denote by ΛD = {x ∈ F× | (x)OF ∈ ND}. Then

(2.1) |(ClK/C)G| = |ClF |
|NC| ·

∏
v ev

[K : F ]
· 1

[ΛD : ΛD ∩NK×]
,

where the product runs over all places of F .

Proof. See [Gra17, Section 3] or [Gra73, Chapter IV]. Gras proved the theorem for (narrow) ray
class groups, but his proof works for class groups. �

Remark 2.7. (1) The index [ΛD : ΛD ∩NK×] is independent of the choice of D.
(2) Take C = {1} and D = {1}, then ΛD is the unit group EF , and Gras’ formula is nothing

but the ambiguous class number formula of Chevalley:

(2.2) |ClGK | = |ClF | ·
∏

v ev
[K : F ]

· 1

[EF : EF ∩NK×]
.

In fact the proof of Gras’ formula is based on Chevalley’s formula, whose proof can be found in
[Lan90, Chapter 13, Lemma 4.1].

One can use Hilbert symbols to compute the index [ΛD : ΛD ∩NK×].
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Lemma 2.8. Let F be a number field and µd ⊂ F . Assume K = F ( d
√
a) is a Kummer extension

of F of degree d. Let D be any subgroup of the group of fractional ideals of K and ΛD = {x ∈
F× | (x)OF ∈ ND}. Define

ρ = ρD,K/F : ΛD −→
∏

v

ζd, x 7→
((x, a

v

)

d

)

v
,

where v passes through all places of F ramified in K/F . Then
(1) Ker(ρ) = ΛD ∩NK×. In particular, [ΛD : ΛD ∩NK×] = |ρ(ΛD)|.
(2) Let Π be the product map

∏
v µd → µd, then Π ◦ ρ = 1 and hence ρ(ΛD) ⊂ kerΠ :=

(
∏

v ζd)
Π=1.

(3) Ker(ρ) and |ρ(ΛD)| are independent of the choice of a.

Proof. Let IK be the group of fraction ideals of K. Note that if D ⊂ IK , then ΛD ⊂ Λ := ΛIK .
Therefore it suffices to prove the results in the case D = IK .

(1) For v a place of F , let w be a place of K above v. Recall that
(x, a

v

)

d
= 1 if and only if

x ∈ NKw/Fv
(K×

w ). We claim that if v is unramified, then x ∈ NKw/Fv
(K×

w ) for x ∈ Λ. Suppose v

is an infinite unramified place. Then Fv = Kw and clearly x ∈ NKw/Fv
(K×

w ). Suppose v is a finite
unramified place. Since x ∈ Λ, we have (x)OF = N(I). Then locally (x)OFv

= NKw/Fv
(J) for

some fractional ideal J of OKw
. Since OKw

is a principal ideal domain, J = (α) for some α ∈ K×
w .

Hence x = uNKw/Fv
(α) with u ∈ O×

Fv
. Since v is unramified, we have u ∈ NKw/Fv

(K×
w ) by local

class field theory. Therefore x ∈ NKw/Fv
(K×

w ).
Now for x ∈ Ker(ρ), we have x ∈ NKw/Fv

(K×
w ) for every place v of F . Hasse’s norm theorem

[Neu13, Chapter VI, Corollary 4.5] gives x ∈ NK×. So Ker(ρ) ⊂ Λ ∩NK×. The other direction
is clear. This proves (1).

(2) We have proved that if v is unramified, then
(x, a

v

)

d
= 1 for x ∈ Λ. Therefore (2) follows

from the product formula of Hilbert symbols.
(3) is a consequence of (1). �

3. Stability of ℓ-class groups

We now give a stationary result about ℓ-class groups in a finite cyclic ℓ-extension. We first
introduce the ramification hypothesis RamHyp. Let F be a number field and K an algebraic
extension (possibly infinite) of F . Then K/F satisfies the ramification hypothesis RamHyp if

Every place of K ramified in K/F is totally ramified in K/F and there is at least
one prime ramified in K/F .

Lemma 3.1. Let G be a finite ℓ-cyclic group with generator σ. Then Zℓ[G] is a local ring with
maximal ideal (ℓ, σ − 1).

Proof. Note that Zℓ[G] ∼= Zℓ[T ]/(T
ℓn − 1) by sending σ to T , where ℓn is the order of G. Let

m be a maximal ideal of Zℓ[T ]/(T
ℓn − 1). Then m ∩ Zℓ is a prime ideal of Zℓ. We claim that

m ∩ Zℓ = ℓZℓ.
Otherwise m ∩ Zℓ = 0, namely m is disjoint with the multiplicative subset Zℓ \ {0}. Then m

corresponds to a prime ideal of the the ring Qℓ[T ]/(T
ℓn − 1). Each prime ideal of Qℓ[T ]/(T

ℓn − 1)
is generated by a monic irreducible polynomial f(T ) with f(T ) | T ℓn − 1. By Gauss’s lemma,
f(T ) has Zℓ-coefficients. Then m = (f(T )). But Zℓ[T ]/(f(T )) is not a field since Zℓ[T ]/(f(T )) is
integral over Zℓ and Zℓ is not a field. So m ∩ Zℓ = ℓZℓ.

Then m corresponds to a maximal ideal of Fℓ[T ]/(T
ℓn − 1) = Fℓ[T ]/(T − 1)ℓ

n

. The latter is
obviously a local ring with maximal ideal (T − 1). Hence m = (ℓ, T − 1). Therefore the maximal
ideal of Zℓ[G] is (ℓ, σ − 1). �
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Proposition 3.2. Let K2/K0 be a cyclic extension of number fields of degree ℓ2 satisfying RamHyp.
Let K1 be the unique nontrivial intermediate field of K2/K0. Then for any n ≥ 1,

|ClK0/ℓ
nClK0 | = |ClK1/ℓ

nClK1 |
implies that

ClK2/ℓ
nClK2

∼= ClK1/ℓ
nClK1

∼= ClK0/ℓ
nClK0 .

In particular, |ClK0(ℓ)| = |ClK1(ℓ)| implies that ClK0(ℓ)
∼= ClK1(ℓ)

∼= ClK2(ℓ).

Proof. Denote by G = Gal(K2/K0) = 〈σ〉. Let Li be the maximal unramified abelian ℓ-extension
of Ki and Xi = Gal(Li/Ki). By class field theory Xi

∼= ClKi
(ℓ). By the maximal property, L2/K0

is a Galois extension. Let G̃ := Gal(L2/K0). The Galois group G acts on X := X2 via xσ = σ̃xσ̃−1

where σ̃ ∈ G̃ is any lifting of σ. By this action X becomes a module over the local ring Zℓ[G]. Since
K0 ⊂ K1 ⊂ K2 satisfies RamHyp, we have L0 ∩K2 = K0. Then X/M = Gal(K2L0/K2) ∼= X0

where M = Gal(L2/K2L0). Note that K2L0/K0 is Galois, so M and X/M are also Zℓ[G]-modules.
We have the following claim:

Claim: X/ωM ∼= X1, where ω = 1 + σ + · · ·+ σℓ−1 ∈ Zℓ[G].

Now for any n ≥ 1, by the claim,

X0/ℓ
nX0

∼= X

M + ℓnX
and X1/ℓ

nX1
∼= X

ωM + ℓnX
.

By the assumptions, M + ℓnX = ωM + ℓnX . Since ω lies in the maximal ideal of Zℓ[G], we
have M ⊂ ℓnX by Nakayama’s Lemma. Hence we have isomorphisms which are induced by the
restrictions

X/ℓnX ∼= X1/ℓ
nX1

∼= X0/ℓ
nX0.

By class field theory we have isomorphisms which are induced by the norm maps

ClK2/ℓ
nClK2

∼= ClK1/ℓ
nClK1

∼= ClK0/ℓ
nClK0 .

Let n → +∞, we get ClK2(ℓ)
∼= ClK1(ℓ)

∼= ClK0(ℓ).

Let us prove the claim. Note that G = G̃/X . Let {p1, · · · , ps} be the set of places ofK0 ramified
in K2/K0. Note that pi is not an infinite place by RamHyp. For each pi, choose a prime ideal

p̃i of L2 above pi. Let Ii ⊂ G̃ be the inertia subgroup of p̃i. The map Ii →֒ G̃ ։ G induces an
isomorphism Ii ∼= G, since L2/K2 is unramified and K2/K0 is totally ramified. Let σi ∈ Ii such
that σi ≡ σ̃ mod X . Then Ii = 〈σi〉. Let ai = σiσ

−1
1 ∈ X . Then 〈I1, · · · , It〉 = 〈σ1, a2, · · · , at〉.

Since L0 is the maximal unramified abelian ℓ-extension of K0, we have

Gal(L2/L0) = 〈G̃′, I1, · · · , It〉 = 〈G̃′, σ1, a2, · · · , at〉
where G̃′ is the commutator subgroup of G̃. In fact G̃′ = (σ − 1)X . The inclusion (σ − 1)X ⊂ G̃′

is clear. On the other hand, it is easy to check that (σ − 1)X is normal in G̃ and X/(σ − 1)X is

in the center of G̃/(σ − 1)X . Since G̃/X ∼= G is cyclic, from the exact sequence

1 → X/(σ − 1)X → G̃/(σ − 1)X → G → 1,

we obtain G̃/(σ − 1)X is abelian. Thus we have

Gal(L2/L0) = 〈(σ − 1)X, σ1, a2, · · · , at〉.
Since ai ∈ X and X ∩ I1 = {1}, we have X ∩Gal(L2/L0) = 〈(σ − 1)X, a2, · · · , at〉. Thus the map

X →֒ G̃ induces the following isomorphism

X/〈(σ − 1)X, a2, · · · , at〉 ∼= G̃/Gal(L2/L0) = X0.

Therefore 〈(σ − 1)X, a2, · · · , at〉 = M . Repeat the above argument to L2/K1, we obtain

X/〈(σℓ − 1)X, b2, · · · , bt〉 ∼= X1,
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where bi = σℓ
iσ

−ℓ
1 for each i. Obviously, (σℓ − 1)X = ω(σ − 1)X . Recall that σi is a lifting of σ so

by definition xσ = σixσ
−1
i for x ∈ X . We have

bi = σℓ
iσ

−ℓ
1 = σℓ−1

i aiσ
−(ℓ−1)
1 = σℓ−2

i aiσ1aiσ
−1
1 σ

−(ℓ−2)
1

= σℓ−2
i ai

1+σσ
−(ℓ−2)
1 = · · · = a1+σ+···+σℓ−1

i = ωai.

So 〈(σℓ − 1)X, b2, · · · , bt〉 = ωM and then X1 = X/ωM . This finishes the proof of the claim. �

Remark 3.3. (1) Let K∞/K be a Zℓ-extension and Kn its n-th layer. It is well known there exists
n0 such that K∞/Kn0 satisfies RamHyp. Then Proposition 3.2 recovers Fukuda’s result [Fuk94]
that if |ClKm

(ℓ)| = |ClKm+1(ℓ)| (resp.|ClKm
/ℓClKm

| = |ClKm+1/ℓClKm+1 |) for some m ≥ n0, then
|ClKm

| = |ClKm+i
| (resp. |ClKm

/ℓClKm
| = |ClKm+1/ℓClKm+1 |) for any i ≥ 1. In fact, our proof is

essentially the same as the proof of the corresponding results for Zℓ-extensions, see [Was97, Lemma
13.14, 13.15] and [Fuk94].

(2) Let K be a number field containing ζℓ2 . Let a ∈ K×\K×ℓ and Kn = K( ℓn
√
a). Then

Gal(Km+2/Km) ∼= Z/ℓ2Z for any m. One can show that there exists some n0 such that K∞/Kn0

satisfies RamHyp. If |ClKm
(ℓ)| = |ClKm+1(ℓ)| for some m ≥ n0, then by repeatedly applying

Proposition 3.2, one can get |ClKm+i
(ℓ)| = |ClKm

(ℓ)| for any i ≥ 0.

Now let ℓ and p be prime numbers and Kn,m = Q(p
1
ℓn , ζ2ℓm). The following result is a conse-

quence of Proposition 3.2.

Proposition 3.4. Assume that all the primes above ℓ in Kn0,m0 are totally ramified in Kn0+1,m0+1

for some integers n0 ≥ 0 and m0 ≥ 1 if ℓ 6= 2 or n0 ≥ vp(2) and m0 ≥ 1 + vp(2) if ℓ = 2. Then

(1) All primes above ℓ in Kn0,m0 are totally ramified in Kn,m/Kn0,m0 for all (n,m) ≥ (n0,m0);
(2) If |An0,m0 | = |An0+1,m0+1|, then An,m

∼= An0,m0 for all (n,m) ≥ (n0,m0).
(3) If ℓ ∤ hn0+1,m0+1, then ℓ ∤ hn,m for all (n,m) ≥ (n0,m0).

Proof. By the assumption for n0 and m0, one has [Kn0+1,m0+1 : Kn0,m0 ] = ℓ2 and

Gal(Kn0,m0+2/Kn0,m0)
∼= Gal(Kn0+1,m0+2/Kn0+1,m0)

∼= Gal(Kn0+2,m0+2/Kn0,m0+2) ∼= Z/ℓ2Z.

Consider the diagram.

Kn0,m0+2 Kn0+1,m0+2 Kn0+2,m0+2

Kn0,m0+1 Kn0+1,m0+1

Kn0,m0 Kn0+1,m0

For (1), let q be a prime of Kn0,m0 above ℓ. Apply Lemma 2.4 to the two vertical lines in
the diagram, we obtain q is totally ramified in Kn0+1,m0+2/Kn0,m0 . Apply Lemma 2.4 to the
top horizontal line in the diagram, we get q is totally ramified in Kn0+2,m0+2/Kn0+2,m0 . Hence q

is totally ramified in Kn0+2,m0+2/Kn0,m0 . Repeatedly using the above argument, we obtain q is
totally ramified in Kn,m/Kn0,m0 for all n ≥ n0 and m ≥ m0.

For (2), by Lemma 2.5, |An0,m0 | = |An0+1,m0+1| implies that

An0+1,m0+1
∼= An0+1,m0

∼= An0,m0+1
∼= An0,m0 .

If p = ℓ, the two vertical lines and the top horizontal line in the diagram satisfy RamHyp by (1).
If p 6= ℓ, let p be a prime of K0,m above p. For any n ≥ 1, note that xℓn − p is a p-Eisenstein
polynomial in K0,m[x]. Therefore Kn,m/K0,m is totally ramified at p for each n,m. In particular
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the horizontal line is totally ramified at p. Since K∞,∞/Kn0,m0 is unramified outside ℓ and p, the
two horizontal lines and the right most vertical line in the diagram all satisfy RamHyp by (1).

Since Kn0,m0+2/Kn0,m0 is a cyclic extension of degree ℓ2, applying Proposition 3.2 to this
extension, we get

An0,m0+2
∼= An0,m0+1

∼= An0,m0 .

Similarly, applying Proposition 3.2 to Kn0+1,m0+2/Kn0+1,m0 , we obtain

An0+1,m0+2
∼= An0+1,m0+1

∼= An0+1,m0 .

Therefore An0+2,m0+1
∼= An0+2,m0 . Note that Kn0+2,m0+2/Kn0,m0+2 is also a cyclic extension of

degree ℓ2. Applying Proposition 3.2 to this extension, we obtain

An0+2,m0+2
∼= An0+1,m0+1

∼= An0,m0+2.

Thus An0+2,m0+2
∼= An0+1,m0+1. Using the above argument inductively, we have An0+k,m0+k

∼=
An0,m0 for any k ≥ 1. Finally we have An,m

∼= An0,m0 by Lemma 2.5.
For (3), ℓ ∤ hn0+1,m0+1 implies that ℓ ∤ hn0,m0 by Lemma 2.5. Then the result follows from

(2). �

4. The case that ℓ is odd

Lemma 4.1. Assume p is either ℓ or a primitive element modulo ℓ2. Then ℓ is totally ramified
in Kn,m for any (n,m) > (0, 0).

Proof. For n ≥ 1, (x+ p)ℓ
n − p is an Eisenstein polynomial in Qℓ[x] by the assumptions on p and

ℓ, hence is irreducible in Qℓ[x]. This means that the extension Qℓ(p
1
ℓn )/Qℓ is totally ramifield of

degree ℓn and µℓ 6⊂ Qℓ(p
1
ℓn ). As a result Qℓ(p

1
ℓn )/Qℓ(p

1

ℓn−1 ) is non-Galois of degree ℓ, one has

Qℓ(p
1
ℓn , ζℓm)/Qℓ(p

1

ℓn−1 , ζℓm) is also of degree ℓ. By induction,

[Qℓ(p
1
ℓn , ζℓm) : Qℓ] = ℓ · [Qℓ(p

1

ℓn−1 , ζℓm) : Qℓ] = ℓn(ℓm − ℓm−1).

Then the extension Qℓ(p
1
ℓn , ζℓn)/Qℓ(ζℓn) is cyclic of degree ℓn, with the only subextensions of the

form Qℓ(p
1

ℓk , ζℓn) for 0 ≤ k ≤ n. If Qab
ℓ ∩Qℓ(p

1
ℓn , ζℓn) ) Qℓ(ζℓn), then there exists k > 0 such that

p
1

ℓk ∈ Qab
ℓ and hence p

1
ℓ ∈ Qab

ℓ , impossible. Hence Qab
ℓ ∩Qℓ(p

1
ℓn , ζℓn) = Qℓ(ζℓn). Thus ℓ is totally

ramified in Kn,n for any n ≥ 1, and therefore totally ramified in Kn,m for all (n,m) > (0, 0). �

Proof of Theorem 1.4. By Proposition 3.4 and Lemma 4.1, if ℓ ∤ h1,2, then ℓ ∤ hn,m for any (n,m) ≥
(1, 2) and then ℓ ∤ hn,m for any (n,m) ≥ (0, 0) by Lemma 2.5. We prove ℓ ∤ h1,2 by applying
Chevalley’s formula (2.2) to K1,2/K0,2. We treat the case p 6= ℓ and leave the case p = ℓ to the
readers.

Since p is inert in K0,2, the ramified primes in K1,2/K0,2 are pO0,2 and (1 − ζℓ2)O0,2. As ℓ is
regular, one has ℓ does not divides the class number K0,m for any m ≥ 1, see [Was97, Corollary
10.5]. We now calculate the unit index in Chevalley’s formula. Recall the following map as in
Lemma 2.8:

ρ : E0,2 −→ µℓ × µℓ

x 7−→
(( x, p

pO0,2

)

ℓ
,
( x, p

(1− ζℓ2)

)

ℓ

)
.

We have the index [E0,2 : E0,2 ∩NK×
0,2] = |ρ(E0,2)| ≤ ℓ by product formula. Since p is a primitive

root modulo ℓ2, we have ℓ2 ∤ pℓ−1 − 1. Then by the norm-compatibility of the Hilbert symbols,
( ζℓ2 , p

pO0,2

)

ℓ
=
( ζℓ, p

pO0,1

)

ℓ
= ζ

pℓ−1
−1

ℓ

ℓ 6= 1.

Thus |ρ(E0,2)| = ℓ and Chevalley’s formula gives ℓ ∤ |ClG1,2| where G = Gal(K1,2/K0,2). Therefore
ℓ ∤ h1,2 by Lemma 2.3. �
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Proof of Theorem 1.5. (1) is a special case of Theorem 1.4.
For (2), by tracing the proof of Lemma 4.1, we obtain that 3 is totally ramified in Kn,n/Q for

any n ≥ 1. To prove (2), we first show that A2,2
∼= A1,1

∼= Z/3Z. We apply Gras’ formula (2.1) in
the case

K2,2/K0,2, C = 〈cl(q2,2)〉, D = 〈q2,2〉
where q2,2 is the unique prime ideal of K2,2 above 3. In this case

ΛD = 〈±ζ9, 1− ζ9, 1− ζ29 , 1− ζ49 〉.
Since p ≡ 4, 7 mod 9, we have pO0,2 = p1p2. The ramified primes of K0,2 in K2,2 are q0,1, p1, p2.
For the map

ρ : ΛD −→ µ9 × µ9 × µ9

x 7−→
((x, p

p1

)

9
,
(x, p
p2

)

9
,
(x, p
q0,2

)

9

)

defined in Lemma 2.8, we know ρ(ΛD) ⊂ (µ9 × µ9 × µ9)
∏

=1, [ΛD : ΛD ∩N(K×
2,2)] = |ρ(ΛD)| and

[E0,2 : E0,2 ∩N(K×
2,2)] = |ρ(E0,2)|.

Now Lemma 4.2 tells us that |ρ(ΛD)| = 81 and |ρ(E0,2)| = 27. Hence Gras’ formula implies that
3 ∤ (Cl2,2/C)G where G = Gal(K2,2/K0,2). This means A2,2 = C by Lemma 2.3. In particular,

A2,2 = ClG2,2(3). By Chevalley’s formula (2.2), we have |A2,2| = |ClG2,2| = 3. For m ≤ 2, n ≤ 2, the
norm map from A2,2 to Am,n is surjective. It has been shown In [Aou18] that A1,0

∼= Z/3Z, the
inequalities |A1,0| ≤ |A1,1| ≤ |A2,2| then imply that A2,2

∼= A1,1
∼= Z/3Z.

By Proposition 3.4, we have An,m
∼= Z/3Z for any n ≥ 1,m ≥ 1. For n ≥ 1, note that

3 = |A1,0| ≤ |An,0| ≤ |An,1| = 3, then An,0
∼= Z/3Z. This completes the proof of (2). �

Lemma 4.2. We have |ρ(ΛD)| = 81 and |ρ(E0,2)| = 27.

Proof. By the product formula, |ρ(ΛD)| ≤ 81. To get equality, it suffices to show |ρ(ΛD)| ≥ 81.
We first compute ρ(ζ9). In the local field Qp(ζ9), one has

( ζ9, p

Qp(ζ9)

)

9
= ζ

p3−1
9

9

which is a primitive 9-th root of unity since p ≡ 4, 7 mod 9. The prime ideals p1 and p2 above p
induce two embeddings from K0,2 to Qp(ζ9) which are not Gal(Qp/Qp)-conjugate. We choose the

corresponding embeddings by setting p1(ζ9) = ζ9 and p2(ζ9) = ζ−1
9 . Then

(ζ9, p
p1

)

9
=
(ζ9, p

p2

)

9
= ζ

p3−1
9

9 .

By the product formula, one has

ρ(ζ9) = (ζ
p3−1

9
9 , ζ

p3−1
9

9 , ζ
− 2(p3−1)

9
9 ) and |〈ρ(ζ9)〉| = 9.

To prove |ρ(ΛD)| ≥ 81, it suffices to show that ρ(1− ζ9)
3 6∈ 〈ρ(ζ9)〉. We have

(1− ζ9, p

Qp(ζ9)

)3
9
=
(1− ζ9, p

Qp(ζ9)

)

3
=
(1− ζ3, p

Qp

)

3
,

and hence
(1− ζ9, p

p1

)3
9

(1− ζ9, p

p2

)3
9
=
(1− ζ9, p

Qp(ζ9)

)

3

(1− ζ−1
9 , p

Qp(ζ9)

)

3

=
(1− ζ3, p

Qp

)

3

(1− ζ−1
3 , p

Qp

)

3
=
(3, p
Qp

)

3
6= 1,
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where the first equality is by definition, the second equality is by the norm-compatibility of Hilbert

symbols, and the last equality is by assumptions on p. This implies
(1− ζ9, p

p1

)3
9
6=
(1− ζ9, p

p2

)3
9

and ρ(1 − ζ9)
3 6∈ 〈ρ(ζ9)〉.

Now we compute |ρ(E0,2)|. Since 3 | h1,0, one has 3 | h2,2 by Lemma 2.5. By Chevalley’s
formula and Lemma 2.3, we must have

|ρ(E0,2)| ≤ 27.

Let σ4 ∈ Gal(Q(ζ8)/Q) be given by σ4(ζ9) = ζ49 . Since p ≡ 4, 7 mod 9, we have σ4(pi) = pi
(i = 1, 2). It follows then

(1− ζ49 , p

pi

)

9
≡ (1− ζ49 )

p3−1
9 mod pi = σ4

((1− ζ9, p

pi

)

9

)
=
(1− ζ9, p

pi

)4
9
.

Therefore ρ(
1−ζ4

9

1−ζ9
) = ρ(1 − ζ9)

3. As we have proved, |ρ(E0,2)| ≥ |〈ρ(ζ9), ρ(1−ζ4
9

1−ζ9
)〉| = 27. Hence

|ρ(E0,2)| = 27. �

5. The case ℓ = 2

In this section, Kn,m = Q(p
1
2n , ζ2m+1), An,m and hn,m are the 2-part of the class group and the

class number of Kn,m respectively.

5.1. The cases p = 2 and p ≡ 3, 5 mod 8.

Proof of Theorem 1.1 for p = 2. The prime 2 is totally ramified inK2,3 = Q( 4
√
2, ζ16) and h2,3 = 1.

Therefore 2 is totally ramified in K∞,∞ and 2 ∤ hn,m for n ≥ 1,m ≥ 2 by Proposition 3.4. The
remaining (n,m) follows from Lemma 2.5. �

Lemma 5.1. Suppose p ≡ 3 mod 8.
(1) The unique prime above 2 in K1,1 is totally ramified in K∞,∞/K1,1.
(2)

∏
v ev = 32 where v runs over the places of K0,2 and ev is the ramification index of v in

K2,2/K0,2.
(3) [E0,2 : E0,2 ∩NK×

2,2] = 8.

Proof. (1) We only need to show that the unique prime above 2 in K1,1 is totally ramified in
K2,2/K1,1 by Proposition 3.4.

It is easy to see that K1,2/K1,1 is ramified at the prime above 2. To see the prime above 2
is also ramified in K2,2/K1,2, we consider the local fields extension Q2(ζ8, 4

√
p)/Q2(ζ8,

√
p). Note

that

Q2( 4
√
p) =

{
Q2(

4
√
3) if p ≡ 3 mod 16,

Q2(
4
√
11) if p ≡ 11 mod 16.

Since the fields Q2(
4
√
3) and Q2(

4
√
11) are not Galois over Q2,

Qun
2 ∩Q2(ζ8, 4

√
p) ⊂ Qab

2 ∩Q2(ζ8, 4
√
p) = Q2(ζ8,

√
p),

whereQun
2 (resp. Qab

2 ) is the maximal unramified (resp. abelian) extension ofQ2. ThusQ2(ζ8, 4
√
p)/Q2(ζ8,

√
p)

is totally ramified. So K2,2/K1,1 is totally ramified at 2.
(2) Since p ≡ 3 mod 8, we have pO0,2 = p1p2, with p1, p2 totally ramified in K∞,2. Then

epi
= [Qp( 4

√
p, ζ8) : Qp(ζ8)] = 4. Let q be the unique prime ideal above 2 in K0,2. Then eq = 2

as Q2(
√
p, ζ8)/Q2(ζ8) is unramified. Since K2,2/K0,2 is unramified outside 2 and p, we have∏

v ev = 32.
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(3) Note that E0,2 = 〈ζ8, 1 +
√
2〉. Recall the following map as in Lemma 2.8:

ρ : E0,2 −→ µ4 × µ4 × µ4

x 7−→
((x, p

p1

)

4
,
(x, p
p2

)

4
,
(x, p

q

)

4

)
.

We have |ρ(E0,2)| = [E0,2 : E0,2 ∩NK×
2,2] and ρ(E0,2) ⊂ (µ4 × µ4 × µ4)

∏
=1.

Let ι1, ι2 : Q(ζ8) → Qp(ζ8) be the corresponding embeddings of p1, p2 such that ι1(ζ8) = ζ8 and

ι2(ζ8) = ζ−1
8 . By definition

(x, p
pj

)

4
= ι−1

j

( ιj(x), p
Qp(ζ8)

)

4
for j = 1, 2.

We first compute ρ(ζ8). Since the residue field of Qp(ζ8) is Fp2 , we have

( ζ±1
8 , p

Qp(ζ8)

)

4
=
( p, ζ±1

8

Qp(ζ8)

)−1

4
= ζ

∓ p2−1
4

8 .

Thus (ζ8, p
p1

)

4
=
(ζ8, p

p2

)

4
= ζ

− p2−1
4

8 = ±i.

By the product formula
(ζ8, p

q

)

4
= −1. Therefore ρ(ζ8) = (±i,±i,−1).

Now we compute ρ(1 +
√
2). In the local field Qp(ζ8),

(1 +
√
2, p

Qp(
√
2)

)2
4
=
(1 +

√
2, p

Qp(
√
2)

)

2
=
(−1, p

Qp

)

2
= −1,

Hence (1 +
√
2, p

Qp(
√
2)

)

4
= ±i.

Since ι1(1 +
√
2) = ι2(1 +

√
2) = 1 +

√
2 and ι1(i) = i, ι2(i) = −i, we have

(1 +
√
2, p

p1

)

4
= ±i,

(1 +
√
2, p

p2

)

4
= ∓i.

By the product formula,
(1 +

√
2, p

q

)

4
= 1.

Therefore, ρ(ζ8) = (±i,±i,−1) and ρ(1 +
√
2) = (±i,∓i, 1). In each case, we have |ρ(E0,2)| =

8. �

Proof of Theorem 1.1 for p ≡ 3 mod 8. We know that the class number of K0,2 = Q(ζ8) is 1, the
product of the ramification indices is 32 and the index [E0,2 : E0,2 ∩NK×

2,2] = 8 by Lemma 5.1,

then |ClG2,2| = 1 by Chevalley’s formula (2.2). Thus 2 ∤ h2,2 by Lemma 2.3. Now Proposition 3.4
implies 2 ∤ hn,m for n,m ≥ 1. Since Kn,1/Kn,0 is ramified at the real places, we have 2 ∤ hn,0 by
Lemma 2.5. �

Lemma 5.2. Suppose p ≡ 5 mod 8.
(1) The unique prime in K1,0 above 2 is totally ramified in K∞,∞/K1,0.
(2)

∏
v e(v,K3,2/K0,2) = 28 where v runs over the places of K0,2.

(3)
∏

v e(v,K2,1/K0,1) = 25 where v runs over the places of K0,1.
(4)

∏
v e(v,K1,2/K0,2) = 4 where v runs over the places of K0,2.

Proof. (1) Note that Q2( 4
√
p)/Q2 is not Galois, so 4

√
p /∈ Qab

2 . Then the proof is the same as the
case p ≡ 3 mod 8.

(2) We only need to consider the primes above 2 and p. Since e(p,K3,0/Q) = 8 and pO0,2 =
p1p2, we have e(p1,K3,2/K0,2) = e(p2,K3,2/K0,2) = 8. From (1), we can easily obtain that
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e(q0,2,K3,2/K0,2) = 4 for q0,2 the only prime above 2 in K0,2. Hence the product of ramification
indexes is 28.

The proofs of (3) and (4) is easy, we leave it to the readers. �

Lemma 5.3. Let p ≡ 5 mod 8. Let Λ0,2 = 〈(1− ζ8)
2, ζ8, 1 +

√
2〉 ⊂ K×

0,2 and Λ0,1 = 〈(1− i)2, i〉 ⊂
K×

0,1. We have

(1) [Λ0,2 : Λ0,2 ∩NK×
3,2] = 32 and [E0,2 : E0,2 ∩NK×

3,2] = 16;

(2) [Λ0,1 : Λ0,1 ∩NK×
2,1] = 8 and [E0,1 : E0,1 ∩NK×

2,1] = 4;

(3) [E0,2 : E0,2 ∩NK×
1,2] = 2.

Proof. Denote by qn,m the unique prime ideal of Kn,m above 2 for each n,m ≥ 0. Note that

E0,2 = 〈ζ8, 1 +
√
2〉. Then Λ0,2 = Λ〈q3,2〉 corresponds to the extension K3,2/K0,2 and Λ0,1 = Λ〈q2,1〉

corresponds to the extension K2,1/K0,1 as in Lemma 2.8.
Since p ≡ 5 mod 8, we have pO0,1 = p1p2 and pO0,2 = P1P2. Note that P1,P2, q0,2 are exactly

the ramified places in K3,2/K0,2. For (1), we study the map as in Lemma 2.8:

ρ := ρ〈q3,2〉,K3,2/K0,2
: Λ0,2 −→ µ8 × µ8 × µ8

x 7−→
((x, p

P1

)

8
,
(x, p
P2

)

8
,
(x, p
q0,2

)

8

)
.

By Lemma 2.8, ρ(Λ0,2) ⊂ (µ8 × µ8 × µ8)
∏

=1, [Λ0,2 : Λ0,2 ∩ N(K×
3,2)] = |ρ(Λ0,2)| and [E0,2 :

E0,2 ∩N(K×
3,2)] = |ρ(E0,2)|.

Let ιj : Q(ζ8) → Qp(ζ8) the corresponding embeddings for Pj for j = 1, 2. We choose ιj so that

ι1(ζ8) = ζ8 (and hence ι(i) = i, ι(
√
2) =

√
2) and ι2(ζ8) = ζ−1

8 (and hence ι2(i) = −i, ι2(
√
2) =

√
2).

The Hilbert symbol
(x, p
Pi

)

8
by definition is ι−1

i

( ιi(x), p
Qp(ζ8)

)

8
.

We first compute ρ(ζ8). In the local field Qp(ζ8),

( ζ±1
8 , p

Qp(ζ8)

)

8
=
( p, ζ±8
Qp(ζ8)

)−1

8
= ζ

∓ p2−1
8

8 ,

we have (ζ8, p
P1

)

8
=
(ζ8, p
P2

)

8
= ζ

− p2−1
8

8 .

Hence ρ(ζ8) = (ζ
− p2−1

8
8 , ζ

− p2−1
8

8 ,±i) by the product formula.

Now we compute ρ(1 +
√
2). In Qp(ζ8),

(1 +
√
2, p

Qp(ζ8)

)2
8
=
(1 +

√
2, p

Qp(ζ8)

)

4
=
(−1, p

Qp

)

4
= −1,

where the second equality is due to the norm-compatible property of Hilbert symbols and the fact
i ∈ Qp for p ≡ 5 mod 8, the last equality is due to the fact −1 is a square but not a fourth power
in Z/pZ for p ≡ 5 mod 8. Therefore

(1 +
√
2, p

Qp(ζ8)

)

8
= ±i.

Since ι1(
√
2) = ι2(

√
2) =

√
2 and ι1(i) = i, ι2(i) = −i, we have

(1 +
√
2, p

P1

)

8
= ±i,

(1 +
√
2, p

P2

)

8
= ∓i.

Hence ρ(1 +
√
2) = (±i,∓i, 1) by the product formula. In each case, we always have |ρ(E0,2)| =

|〈ρ(ζ8), ρ(1 +
√
2)〉| = 16.
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Finally we compute ρ((1 − ζ8)
2). In Qp(ζ8),

a± :=
((1 − ζ±1

8 )2, p

Qp(ζ8)

)

8
=
(1− ζ±1

8 , p

Qp(ζ8)

)

4
=
( (1− ζ±1

8 )(1 + ζ±1
8 ), p

Qp

)

4
=
(1∓ i, p

Qp

)

4
.

Then a+a− =
(2, p
Qp

)

4
= ±i and a−

a+ =
( i, p
Qp

)

4
= ±i. Therefore

(a+, a−) = (±i, 1), (±i,−1), (1,±i), (−1,±i).

By definition,
( (1− ζ8)

2, p

P1

)

8
= a+ and

((1− ζ8)
2, p

P2

)

8
= ι−1

2 (a−). Therefore

(( (1− ζ8)
2, p

P1

)

8
,
( (1− ζ8)

2, p

P2

)

8

)
= (±i, 1), (±i,−1), (1,∓i), (−1,∓i).

In each case, we always have |ρ(Λ0,2)| = |〈ρ((1 − ζ8)
2), ρ(ζ8), ρ(1 +

√
2)〉| = 32. This proves (1).

For (2), we study the map

ρ4 := ρ〈q2,1〉,K2,1/K0,1
: Λ0,1 −→ µ4 × µ4 × µ4

x 7−→
((x, p

p1

)

4
,
(x, p
p2

)

4
,
(x, p
q0,1

)

4

)
.

We always have ( i, p
Qp

)

4
=
(p, i
Qp

)−1

4
= i−

p−1
4 = ±i.

Let τ1, τ2 be the embeddings corresponding to p1, p2 respectively. We assume that τ1(i) = i and
τ2(i) = −i. Then

( i, p
p1

)

4
= τ−1

1

(τ1(i), p
Qp

)

4
= τ−1

2

(τ2(i), p
Qp

)

4
=
( i, p
p2

)

4
= ±i.

Hence ρ4(i) = (±i,±i,−1) by the product formula. So [E0,1 : E0,1 ∩ NK×
2,1] = |ρ4(E0,1)| =

|〈ρ4(i)〉| = 4.
Now we compute ρ4((1 + i)2). Since

( (1− i)2, p

Qp

)

4

((1 + i)2, p

Qp

)

4
=
(1− i, p

Qp

)

2

(1 + i, p

Qp

)

2
=
(2, p
Qp

)

2
= −1,

we have ( (1− i)2, p

p1

)

4
= ±1,

( (1− i)2, p

p2

)

4
= ∓1.

Hence ρ4((1 − i)2) = (±1,∓1,−1). Therefore, [Λ0,1 : Λ0,1 ∩NK×
2,1] = |〈ρ4((1 − i)2), ρ4(i)〉| = 8.

This proves (2).
(3) follows from the values of the following quadratic Hilbert symbols:

( ζ8, p

Qp(ζ8)

)

2
=
(−i, p

Qp

)

2
= −1,

(1 +
√
2, p

Qp(ζ8)

)

2
=
(−1, p

Qp

)

2
= 1. �

Proof of Theorem 1.1 for p ≡ 5 mod 8. We first prove that 2 || h3,2, 2 || h2,1 and 2 ∤ h1,2.
We apply Gras’ formula (2.1) to the case

K3,2/K0,2, C = 〈cl(q3,2)〉, D = 〈q3,2〉
where qn,m is the unique prime ideal of Kn,m above 2. Then ΛD = Λ0,2 as in Lemma 5.3. By
the above computation and Lemma 2.3, A3,2 = 〈cl(q3,2)〉(2). Note that C is invariant under the
action of G := Gal(K3,2/K0,2). We have A3,2 = AG

3,2. Chevalley’s formula (2.2) and the above

computation imply that |A3,2| = |AG
3,2| = 2.
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Similarly, applying Gras’ formula to the case

K2,1/K0,1, C = 〈cl(q2,1)〉, D = 〈q2,1〉
shows that A2,1 = 〈cl(q2,1)〉(2). In particular, A2,1 is invariant under the action of Gal(K2,1/K0,1).
Apply Chevalley’s formula to K2,1/K0,1, we obtain |A2,1| = 2.

By Applying Chevalley’s formula to the extension K1,2/K0,2 and Lemma 2.3, we have 2 ∤ h1,2.
Hence 2 ∤ h1,1 by Lemma 2.5.

We have 2 || hn,m for n ≥ 2,m ≥ 1 by Proposition 3.4 and 2 ∤ h1,m for n = 1,m ≥ 1 by
Proposition 3.2.

It remains to prove that 2 ∤ hn,0. The proof consists of three steps:

Step 1: Let ǫ be the fundamental unit of Q(
√
p). We show that

(ǫ,√p
√
p

)

2
= −1.

Write ǫ =
a+b

√
p

2 , a, b ∈ Z. Then

( ǫ,√p

(
√
p)

)

2
=
(a/2,√p

(
√
p)

)

2
=
(a/2,−p

p

)

2
=

(
a/2

p

)
.

It is well-known NQ(
√
p)/Q(ǫ) = (a2 )

2 − p( b2 )
2 = −1. Since (a2 )

2 ≡ −1 mod p and p ≡ 5 mod 8, we

have
(

a/2
p

)
≡ (a2 )

p−1
2 ≡ −1 mod p.

Step 2: We show that [En,0 : En,0 ∩NK×
n+1,0] = 4 for each n ≥ 1.

Consider the map as in Lemma 2.8,

ρ : En,0 −→ µ2 × µ2 × µ2

x 7−→
((x, p 1

2n

∞n

)

2
,
(x, p 1

2n

(p
1
2n )

)

2
,
(x, p 1

2n

qn,0

)

2

)
,

where ∞n is the real place of Kn,0 such that ∞n(p
1
2n ) < 0. We know [En,0 : En,0 ∩ NK×

n,0] =

|ρ(En,0)| and ρ(En,0) ⊂ (ζ2 × ζ2 × ζ2)
∏

=1. In particular, |ρ(En,0)| ≤ 4.
Since −1, ǫ ∈ En,0. It is enough to prove that |〈ρ(−1), ρ(ǫ)〉| = 4. By Step 1, we have

(ǫ, p 1
2n

(p
1

2n )

)

2
=
( ǫ,−p

1

2n−1

(p
1
2n )

)

2
= · · · =

( ǫ,−√
p

(
√
p)

)

2
= −1.

Therefore, ρ(ǫ) = (±1,−1,∓1). Since ρ(−1) = (−1, 1,−1), we have |〈ρ(−1), ρ(ǫ)〉| = 4 and hence
|ρ(En,0)| = 4.
Step 3: We prove 2 ∤ hn,0 for any n ≥ 1.

We prove it by induction on n. The case n = 1 is well-known. Assume that 2 ∤ hn,0. The product
of ramification indices of Kn+1,0/Kn,0 is 8. Using the result in Step 2, Chevalley’s formula (2.2)
for the extension Kn+1,0/Kn,0 and Lemma 2.3 then imply 2 ∤ hn+1,0. �

5.2. The case p ≡ 7 mod 16. The main purpose of this subsection is to prove Theorem 1.1(3).
We first give a brief description of the proof.

• Apply Gras’ formula (2.1) inductively to the extension Kn,0/Kn−1,0 to show that An,0

is generated by the unique prime above 2. Then apply (2.1) to Kn,1/Kn,0 to show that
An,1 equals the 2-primary part of 〈classes of primes above 2〉. Next we apply Chevalley’s
formula (2.2) to the extensions K3,1/K1,1 and K2,1/K1,1 to deduce A2,1

∼= A3,1
∼= Z/2Z×

Z/2Z. Proposition 3.2 then implies An,1
∼= Z/2Z× Z/2Z for n ≥ 2. Finally from this one

can get An,0
∼= Z/2Z for n ≥ 2.

• Apply (2.1) inductively to K1,m/K0,m to show that A1,m is a quotient of Z/2m−1Z, then
use Kida’s λ-invariant formula to get |A1,m| ≥ 2m−1. This leads to A1,m

∼= Z/2m−1Z for
any m ≥ 1.
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For each n ≥ 1, Kn,0 has two real places. Let ∞n be the real place such that ∞n(p
1
2n ) < 0.

Then ∞n is ramified in Kn+1,0/Kn,0, while the other real place is unramified in Kn+1,0/Kn,0.

The prime p is totally ramified as pOn,0 = p2
n

n,0 in Kn,0, where pn,0 = (p
1
2n ). Since p is inert

in K0,1, pn,0 is inert in Kn,1. Write pn,0On,1 = pn,1. The prime p0,1 = (p) is totally ramified in
K∞,1/K0,1.

Since (x + 1)2
n − p is a 2-Eisenstein polynomial, 2 is totally ramified as 2On,0 = q2

n

n,0 in Kn,0.

Since 2 splits in Q(
√−p)/Q, qn,0 splits as qn,0On,1 = qn,1q

′
n,1 in Kn,1/Kn,0 for each n ≥ 1. The

primes q1,1 and q′1,1 are totally ramified in K∞,1/K0,1.

The prime 2 is also totally ramified as 2O0,m = q2
n

0,m in K0,m, where q0,m = (1 − ζ2m+1)O0,m.
The prime q0,m splits as q0,mO1,m = q1,mq′1,m in K1,m for each m ≥ 1.

Since 2 ∤ h1,0, p1,0 is principal. If π = u + v
√
p is a generator of p1,0, we must have N(π) =

u2 − pv2 = 2, since −2 is not a square modulo p. If π is a totally positive generator of p1,0, then
π2

2 = ǫk with k odd, where ǫ is the fundamental unit of K1,0. Replace the generator π by πǫ
1−k
2 .

We may assume that π2

2 = ǫ. So E1,0 = 〈−1, π
2

2 〉.

Lemma 5.4. The class number h1,1 of K1,1 = Q(
√
p, i) is odd and E1,1 = 〈 π

1+i , i〉.

Proof. Apply Chevalley’s formula to the extension K1,1/K0,1 and Lemma 2.3, one has 2 ∤ h1,1.
By [FT93, Theorem 42, Page 195],

[E1,1 : 〈π
2

2
, i〉] = 1 or 2.

Note that π
1+i is a unit and [〈 π

1+i , i〉 : 〈π
2

2 , i〉] = 2, we must have E1,1 = 〈 π
1+i , i〉. �

Lemma 5.5. We have

(1)
(π,√p

p1,0

)

2
= −1 and

(π,√p

q1,0

)

2
= −1;

(2) [E1,0 : E1,0 ∩NK×
2,0] = 2;

(3) [E1,1 : E1,1 ∩NK×
3,1] = 4 and [E1,1 : E1,1 ∩NK×

2,1] = 1.

Proof. (1) Since π = u + v
√
p is totally positive, we have u > 0, u2 − pv2 = 2 and 2 ∤ uv. Note

that 2 is a square modulo v, so v ≡ ±1 mod 8. Then u2 ≡ 9 mod 16 since p ≡ 7 mod 16. In other
words, u ≡ ±3 mod 8. We have

(π,√p

p1,0

)

2
=
(u,√p

p1,0

)

2
=
(u,−p

p

)

2
=

(
u

p

)
=

(−p

u

)
=

(
2

u

)
= −1.

The fourth equality is due to the quadratic reciprocity law. We have
(π,√p

∞1

)

2
= 1 as π is

totally positive, thus
(π,√p

q1,0

)

2
= −1 by the product formula.

(2) Since the infinite place ∞1 is ramified, −1 is not a norm of K2,0. For the fundamental unit
π2

2 , we have

( π2

2 ,
√
p

p1,0

)

2
=
(2,√p

p1,0

)

2
=
(2,−p

p

)

2
= 1,

( π2

2 ,
√
p

∞1

)

2
= 1.

By the product formula,
( π2

2 ,
√
p

q1,0

)

2
= 1.

Then π2

2 is a norm of K2,0 by Hasse’s norm theorem. This proves (2).
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(3) We need to study the map

ρ : E1,1 −→ µ4 × µ4 × µ4

x 7−→
((x,√p

p1,1

)

4
,
(x,√p

q1,1

)

4
,
(x,√p

q′1,1

)

4

)
.

Then ρ(E1,1) ⊂ (µ4 × µ4 × µ4)
∏

=1 and [E1,1 : E1,1 ∩NK×
3,1] = |ρ(E1,1)|.

We first compute ρ(i). Since p ≡ 7 mod 16 and the residue field of p1,1 is Fp2 , we have
( i,

√
p

Qp(
√
p, i)

)

4
=
( √

p, i

Qp(
√
p, i)

)−1

4
= i−

p2−1
4 = 1.

Thus ( i,√p

p1,1

)

4
= 1.

Note that the localization of K1,1 at q1,1 is Q2(
√
p, i) = Q2(i). Note that

√−p ∈ Q2. Since
( i, i

Q2(i)

)

4
=
( i,−1

Q2(i)

)

4

( i,−i

Q2(i)

)

4
=
( i,−1

Q2(i)

)

4
=
( i, i

Q2(i)

)

2
= 1,

we have

( i,
√
p

Q2(i)

)

4
=
( i,√−p

Q2(i)

)

4
=





( i,
√
−7

Q2(i)

)

4
=
( i, 11

Q2(i)

)

4
, if p ≡ 7 mod 32;

( i,
√
−23

Q2(i)

)

4
=
( i, 3

Q2(i)

)

4
, if p ≡ 23 mod 32.

Applying the product formula to the quartic Hilbert symbols on Q(i) gives
( i, 11

Q2(i)

)

4
=
( i, 11

Q11(i)

)−1

4
= i−

112−1
4 = −1,

( i, 3

Q2(i)

)

4
=
( i, 3

Q3(i)

)−1

4
= i−

32−1
4 = −1.

Therefore,
( i,

√
p

Q2(i)

)

4
= −1 and we have ρ(i) = (1,−1,−1).

Next we compute ρ( π
1+i ). By (1), we have π

p−1
2 ≡ −1 mod p1,0. Since p ≡ 7 mod 16, π

p2−1
4 ≡

1 mod p1,0. Hence
(π,√p

p1,1

)

4
= 1. Since (1 + i)

p2−1
4 = (2i)

p2−1
8 = −2

p2−1
8 ≡ −1 mod p, we have

(1 + i,
√
p

p1,1

)

4
= −1. Thus

( π
1+i ,

√
p

p1,1

)

4
= −1.

To compute
( π

1+i ,
√
p

q1,1

)

4
, we first compute its square:

( π
1+i ,

√
p

q1,1

)2
4
=
( π

1+i ,
√
p

q1,1

)

2
=
(π,√p

q1,1

)

2

(1 + i,
√
p

q1,1

)

2
,

Note that Q2(
√
p) = Q2(i). By part (1) of Lemma 5.5 , we have

1 =
(π,√p

q0,1

)

2
=
( π,

√
p

Q2(
√
p)

)

2
=
(π,√p

q1,1

)

2
.

Note that
√−p ≡ ±3 mod 8. So we have the following equality of quadratic Hilbert symbols:

(1± i,
√
p

Q2(i)

)

2
=
(1± i,

√−p

Q2(i)

)

2
=
(2,√−p

Q2

)

2
= −1.
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Therefore
( π

1+i ,
√
p

q1,1

)2
4
= 1 =

( π
1+i ,

√
p

q′1,1

)2
4
.

By the product formula we must have ρ( π
1+i) = (−1,±1,∓1). Hence |ρ(E1,1)| = 4. This implies

[E1,1 : E1,1 ∩NK×
3,1] = 4.

To compute [E1,1 : E1,1 ∩NK×
2,1], we need to consider the following map

ρ′ : E1,1 −→ µ2 × µ2 × µ2

x 7−→
((x,√p

p1,1

)

2
,
(x,√p

q1,1

)

2
,
(x,√p

q′1,1

)

2

)
.

Then ρ′ = ρ2 by Proposition 2.1(7). Thus ρ′(i) = ρ(i)2 = (1, 1, 1) and ρ′( π
1+i) = ρ( π

1+i )
2 = (1, 1, 1).

Therefore [E1,1 : E1,1 ∩NK×
2,1] = |ρ′(E1,1)| = 1. �

Proposition 5.6. We have
(1) An,0 = 〈cl(qn,0)〉 for n ≥ 1 and A2,0

∼= Z/2Z;
(2) An,1 = 〈cl(qn,1), cl(q′n,1)〉(2) for n ≥ 2.

Proof. (1) We prove this by induction. The case n = 1 is well-known. Suppose the result holds for
n. We apply Gras’ formula (2.1) to

Kn+1,0/Kn,0, C = 〈cl(qn+1,0)〉, D = 〈qn+1,0〉.
Note that N(C) = 〈cl(qn,0)〉 = An,0 by the assumption. The product of ramification indices is 8.
Consider the map

ρ := ρD,Kn+1,0/Kn,0
: ΛD −→ µ2 × µ2 × µ2

x 7−→
((x, p 1

2n

∞n

)

2
,
(x, p 1

2n

pn,0

)

2
,
(x, p 1

2n

qn,0

)

2

)
.

We have |ρ(ΛD)| = [ΛD : ΛD∩NK×
n+1,0] and ρ(ΛD) ⊂ (µ2×µ2×µ2)

∏
=1, in particular, |ρ(ΛD)| ≤ 4.

Notice that ΛD ⊃ 〈π, π2

2 ,−1〉.
Since ∞n(p

1
2n ) < 0,

(−1, p
1

2n

∞n

)

2
= −1.

By the norm-compatibility of Hilbert symbols,

(−1, p
1

2n

pn,0

)

2
=
(−1, p

1

2n−1

pn−1,0

)

2
= · · · =

(−1,−p

(p)

)

2
= −1.

Then ρ(−1) = (−1,−1, 1). Since π is totally positive,

(π, p 1
2n

∞n

)

2
= 1.

By the norm-compatibility of Hilbert symbols and the above Lemma,

(π, p 1
2n

pn,0

)

2
=
(π, (−1)n−1√p

p1,0

)

2
= −1.

Hence ρ(π) = (1,−1,−1). Therefore |ρ(ΛD)| ≥ |〈ρ(π), ρ(−1)〉| = 4. This shows that |ρ(ΛD)| = 4.
Then Gras’ formula and Lemma 2.3 tell us An+1,0 = 〈cl(qn+1,0)〉(2). Note that q2

n

n+1,0 = q1,0 = (π),
so 〈cl(qn+1,0)〉(2) = 〈cl(qn+1,0)〉. By induction, An+1,0 = 〈cl(qn+1,0)〉.
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In particular, A2,0 is invariant under the action of Gal(K2,0/K1,0). Since E1,0 = 〈−1, π
2

2 〉, and
[E1,0 : E1,0 ∩NK×

2,0] = 2 by the above Lemma. Applying Chevalley’s formula (2.2) to K2,0/K1,0

gives A2,0
∼= Z/2Z.

(2) We apply Gras’ formula to

Kn,1/Kn,0, C = 〈cl(qn,1), cl(q′n,1)〉, D = 〈qn,1, q′n,1〉.

Then NC = 〈cl(qn,0)〉 = An,0 by (1). Only the two infinite places are ramified in Kn,1/Kn,0, so

−1 is not a norm. This shows that the index [ΛD : ΛD ∩NK×
n+1,0] ≥ 2. By Gras’ formula and

Lemma 2.3, An,1 = 〈cl(qn,1), cl(q′n,1)〉(2). �

Theorem 5.7. For p ≡ 7 mod 16, we have An,1
∼= Z/2Z×Z/2Z and An,0

∼= Z/2Z for any n ≥ 2.

Proof. The extension K∞,1/K1,1 satisfies RamHyp and Gal(Kn+2,1/Kn,1) is cyclic of order 4 for
each n ≥ 1. By Proposition 3.2, to show An,1

∼= Z/2Z × Z/2Z, it suffices to show A2,1
∼= A3,1

∼=
Z/2Z× Z/2Z.

Let G2,1 = Gal(K2,1/K1,1). By Proposition 5.6, A2,1 = 〈cl(q2,1), cl(q′2,1)〉(2) = A
G2,1

2,1 . Since h1,1

is odd, cl(q2,1)
2 = cl(q1,1O2,1) has odd order. In other words, A2,1 is a quotient of Z/2Z× Z/2Z.

Note that A2,1 = A
G2,1

2,1 . The product of ramification indices of K2,1/K1,1 is 8. By Lemma 5.5 and

Chevalley’s formula (2.2) for K2,1/K1,1, we obtain |A2,1| = |AG2,1

2,1 | = 4. So A2,1
∼= Z/2Z× Z/2Z.

By Proposition 5.6, A3,1 = A
G3,1

3,1 where G3,1 = Gal(K3,1/K1,1). The product of ramification

indices of K3,1/K1,1 is 64. By Lemma 5.5 and Chevalley’s formula for K3,1/K1,1, we get |A3,1| =
|AG3,1

3,1 | = 4. Since the norm map from A3,1 to A2,1 is surjective by Lemma 2.5, we must have

A3,1
∼= Z/2Z× Z/2Z.

Now we compute An,0. Since Kn,1/Kn,0 is ramified at the real places, the norm map from An,1

to An,0 is surjective by Lemma 2.5. In particular, An,0 is a quotient of Z/2Z × Z/2Z. We know
that An,0 is cyclic by Proposition 5.6. Since the norm map from An,0 to A2,0

∼= Z/2Z is surjective,
we must have An,0

∼= Z/2Z for n ≥ 2. �

To compute the 2-class group of K1,m for m ≥ 1, we first note that K1,m is the m-th layer of
the cyclotomic Z2-extension of K1,1.

Proposition 5.8. For p ≡ 7 mod 16, we have A1,m = 〈cl(q1,m)〉(2) for m ≥ 1.

Proof. We first reduce the result to the case m = 2. Suppose A1,2 = 〈cl(q1,2)〉(2). Note that
K1,∞/K1,1 is totally ramified at q1,1 and q′1,1, and unramified outside q1,1 and q′1,1. Applying
Gras’ formula (2.1) to

K1,2/K1,1, C1 = 〈cl(q1,2)〉, D1 = 〈q1,2〉
gives

[ΛD1 : ΛD1 ∩NK×
1,2] = 2.

Next we apply Gras’ formula to

K1,3/K1,2, C2 = 〈cl(q1,3)〉, D2 = 〈q1,3〉.

Note that N(C)(2) = A1,2. To prove A1,3 = C2, we need to prove that [ΛD2 : ΛD2 ∩NK×
1,3] = 2 by

Lemma 2.3. Note that K1,2 = K1,1(
√
−i) and K1,3 = K1,2(

√
ζ8). We need to study the following

two maps:

ρ1 = ρD1,K1,2/K1,1
: ΛD1 −→ µ2 × µ2

x 7−→
((x,−i

q1,1

)

2
,
(x,−i

q′1,1

)

2

)
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and

ρ2 = ρD2,K1,3/K1,2
: ΛD2 −→ µ2 × µ2

x 7−→
((x, ζ8

q1,2

)

2
,
(x, ζ8
q′1,2

)

2

)
.

We have |ρ2(Λ2)| = [ΛD2 : ΛD2 ∩NK×
1,3] ≤ 2 by Lemma 2.8. Note that ΛD1 ⊂ ΛD2 . By the

norm-compatible property of Hilbert symbols,
(x, ζ8
q1,2

)

2
=
(x,−i

q1,1

)

2
. So the following diagram is

commutative:

ΛD2

ρ2
// µ2 × µ2

ΛD1

ρ1

::
✈
✈
✈
✈
✈
✈
✈
✈
✈?�

OO

Thus 2 = |ρ1(ΛD1)| ≤ |ρ2(ΛD2)| ≤ 2 and [ΛD2 : ΛD2 ∩ NK×
1,3] = 2, which implies that A1,3 =

〈cl(q1,3)〉(2) by Lemma 2.3. Repeating this argument, we get A1,m = 〈cl(q1,m)〉(2) for m ≥ 2.
Consider the case

K/F = K1,2/K0,2, C = 〈cl(q1,2)〉, D = 〈q1,2〉.
Note that C is a Gal(K1,2/K0,2)-submodule of A1,2, since for σ ∈ Gal(K1,2/K0,2), σ(q1,2)q1,2 =
q0,2O1,2 = (1−ζ8)O1,2, in other words, σ(cl(q1,2)) = cl(q1,2)

−1. If we can show [ΛD : ΛD∩NK×
1,2] =

2, then by Gras’ formula (2.1) and Lemma 2.3, we have A1,2 = 〈cl(q1,2)〉(2).
Note that ΛD = 〈1−ζ8, ζ8, 1+

√
2〉 and the ramified places in K1,2/K0,2 are p0,2 and p′0,2, where

p0,2p
′
0,2 = pO0,2. By Lemma 2.8, for the map

ρ = ρD,K1,2/K0,2
: ΛD −→ µ2 × µ2

x 7−→
((x, p

p0,2

)

2
,
(x, p
p′0,2

)

2

)
,

we have |ρ(ΛD)| = [ΛD : ΛD ∩NK×
1,2] ≤ 2. To show |ρ(ΛD)| = 2, it suffices to show that ρ is not

trivial. Let us compute ρ(1 − ζ8). For p ≡ 7 mod 16, the conjugate of ζ8 over Qp is ζ−1
8 . By the

norm-compatible property of Hilbert symbols, we have

(1− ζ8, p

p0,2

)

2
=
(1− ζ8, p

Qp(ζ8)

)

2
=
( (1− ζ8)(1− ζ−1

8 ), p

Qp

)

2
=
(2 + ζ8 + ζ−1

8 , p

Qp

)

2
.

By Hensel’s Lemma, we have

(2 + ζ8 + ζ−1
8 , p

Qp

)

2
= 1 ⇔ 2 + ζ8 + ζ−1

8 mod p is a square ⇔ 2 + ζ8 + ζ−1
8 ∈ (Q×

p )
2.

Notice that (ζ16 + ζ−1
16 )2 = 2 + ζ8 + ζ−1

8 . Since p ≡ 7 mod 16, Frobp(ζ16 + ζ−1
16 ) = ζ716 + ζ−7

16 =

−(ζ16 + ζ−1
16 ), where Frobp is the Frobenius element of Gal(Qp/Qp). Thus ζ16 + ζ−1

16 /∈ Qp and we

have
(1− ζ8, p

p0,2

)

2
= −1. �

Theorem 5.9. For p ≡ 7 mod 16 and m ≥ 1, A1,m
∼= Z/2m−1Z.

Proof. Note that A1,1 is trivial and q2
m−1

1,m = q1,1. We have A1,m = 〈cl(q1,m)〉(2) is a quotient

of Z/2m−1Z. Since h1,m | h1,m+1 by Lemma 2.5, if |A1,m| < 2m−1 for some m, we must have
|A1,k| = |A1,k+1| for some k. Then |A1,n| = |A1,k| for any n ≥ k by Proposition 3.2. But Kida’s
formula [Kid79, Theorem 1] shows that the λ-invariant of the cyclotomic Z2-extension of Q(

√−p)
is 1. In particular, the 2-class numbers of Q(

√−p, ζ2m+1 + ζ−1
2m+1) are unbounded when m → ∞.
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Thus the 2-class numbers of Q(
√−p, ζ2m+1) = K1,m are also unbounded by Lemma 2.5. We get a

contradiction. �

Proof of Theorem 1.1(3). Theorem 1.1(3) is just the combination of Theorem 5.7 and Theorem
5.9. �

5.3. Congruence property of the relative fundamental unit. We are now ready to prove
Theorem 1.2. We assume p ≡ 7 mod 16 and use the same notations as in § 5.2.

To prove this theorem, we need an explicit reciprocity law for a real quadratic field F . We view
F ⊂ R by fixing an embedding. For a prime ideal p with odd norm and γ ∈ OF prime to p, define

the Legendre symbol
[
γ
p

]
∈ {±1} by the congruence

[
γ
p

]
≡ γ

Np−1
2 mod p. For coprime γ, δ ∈ OF

with (2, δ) = 1, define
[
γ
δ

]
:=
∏

p|δ

[
γ
p

]vp(δ)
. So by definition

[
γ
δ

]
= 1 if δ ∈ O×

F .

For γ, δ ∈ OF \ {0}, define
{γ, δ} = (−1)

sgn(γ)−1
2 · sgn(δ)−1

2

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0. Note that {γ, δ1}{γ, δ2} = {γ, δ1δ2}.
Theorem 5.10. Assume that γ1, δ1, γ2, δ2 ∈ OF have odd norms, γ1 and δ1 are coprime, γ2 and
δ2 are coprime, and γ1 ≡ γ2, δ1 ≡ δ2 mod 4. Then

[
γ1
δ1

] [
δ1
γ1

] [
γ2
δ2

] [
δ2
γ2

]
= {γ1, δ1}{γ′

1, δ
′
1}{γ2, δ2}{γ′

2, δ
′
2}.

where ξ′ is the conjugate of ξ ∈ F .

Proof. This follows from [Lem05, Lemma 12.12, Lemma 12.13, Lemma 12.16] directly. �

Proof of Theorem 1.2. (1) Note that E2,0/E1,0 is an abelian group of rank 1. We claim that
E2,0/E1,0 is torsion-free. Otherwise, there exists u ∈ E2,0\E1,0 such that uj ∈ E1,0 for some j ≥ 2.
Then K2,0 = K1,0(u). The norm of u respect to the extension K2,0/K1,0 is uζu = ζu2 ∈ E1,0 for
some ζ ∈ ζj ∩K2,0. So ζ = ±1. Thus u2 ∈ E1,0 and this implies that K2,0/K1,0 is unramified at
p. This contradicts to the fact that K2,0/K1,0 is ramified at p. This proves the claim.

Let η ∈ E2,0 such that its image in E2,0/E1,0 is a generator of E2,0/E1,0. Then clearly E2,0 =
〈η, ǫ,−1〉. By Lemma 5.5, ǫ ∈ NK×

2,0. Let G = Gal(K2,0/K1,0). Since AG
2,0 = 〈q2,0〉 and q2,0 is a

G-invariant fractional ideal, by [Gre, Proposition 1.3.4], E1,0 ∩NK×
2,0 = NE2,0 and in particular

ǫ ∈ NE2,0. Therefore we must have N(±ηǫk) = ǫ. Replacing η by sgn(η)ηǫk, then η is totally
positive since ǫ is totally positive, N(η) = ǫ and E2,0 = 〈η, ǫ,−1〉.

(2) We first reduce it to the case η′ = η. Suppose the result holds for η. For any η′ ∈ E2,0 such
that N(η′) = ǫ, we can write η′ = sgn(η′)ηkǫs with k = 1 − 2s. Firstly, one easily see that ǫ ≡
±1 mod

√
p. We claim that ǫ ≡ 1 mod

√
p. Since ǫ = N(η) = ηη, we have ǫ ≡ ηη ≡ η2 mod 4

√
p.

Therefore, ǫ is a square in O2,0/( 4
√
p) ∼= Fp. Because −1 is not a square in Fp, we obtain ǫ ≡

1 mod
√
p. Then η′ ≡ sgn(η′)(−1)k ≡ −sgn(η′) mod 4

√
p. Write η = α + β 4

√
p with α, β ∈ Z[

√
p].

By the assumption we have q || α and q ∤ β. It is easy to check that for odd k, q || αk also where
ηk = αk + βk

4
√
p with αk, βk ∈ Z[

√
p]. Thus we have vq(Tr(η

′)) = vq(2ǫ
sαk) = vq(2ǫ

sα) = 3.
From now on we prove the result holds for η = α+ β 4

√
p. Write α = a+ b

√
p and β = c+ d

√
p

with a, b, c, d ∈ Z. Since the infinite place is ramified in K2,0, we have NK2,0/Q(η) = 1. Hence

NK2,0/Q(η) ≡ a4 ≡ 1 mod 4
√
p. Since p ≡ 7 mod 16, we have η ≡ a ≡ ±1 mod 4

√
p.

Let G = Gal(K3,0/K2,0). By Proposition 5.6 and Theorem 5.7 tell us |A3,0| = |AG
3,0| = |A2,0| =

2. Applying Chevalley’s formula (2.2) on K3,0/K2,0 gives [E2,0 : NK×
3,0 ∩ E2,0] = 4. This implies((η, 4

√
p

∞2

)
,
(η, 4

√
p

( 4
√
p)

)
,
(η, 4

√
p

q2,0

))
6= (1, 1, 1). Therefore

(η, 4
√
p

( 4
√
p)

)
=
(η, 4

√
p

q2,0

)
= −1 by the totally

positivity of η and the product formula. Hence η is not a square modulo 4
√
p and we must have

η ≡ −1 mod 4
√
p.
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Write α = πtα0 with π ∤ α0, recall that π is the totally positive generator of q such that ǫ = π2

2 .
Now t = vq(Tr(

η
2 )) = vq(Tr(η))− 2, so our goal is to prove t = 1. Note that α and α0 are positive.

Write ǫ = x+ y
√
p, π = u+ v

√
p. By Lemma 5.5, u and v are both odd and v ≡ ±1 mod 8. From

ǫ = π2

2 and N(π) = u2 − pv2 = 2, we obtain 8 ‖ x = u2 − 1 = pv2 + 1 and y ≡ ±3 mod 8.
If y ≡ 3 mod 8, then ǫ ≡ −√

p mod 4. Take (α0,−
√
p, α0, ǫ) in Theorem 5.10, since α0 >

0,
√
pǫ′ > 0, we have

[
α0

−√
p

] [−√
p

α0

] [α0

ǫ

] [ ǫ

α0

]
= {α0,−

√
pǫ}{α′

0,
√
pǫ′} = 1.

Since α2 −√
pβ2 = ǫ, we have

[
α2 −√

pβ2

α0

]
=

[−√
p

α0

]
=

[
ǫ

α0

]
.

By definition,
[
α0

ǫ

]
= 1. Combine the above two equalities,

[
α0

−√
p

]
= 1. By Lemma 5.5,

[
π

−√
p

]
=
(π,√p

√
p

)

2
= −1. Thus we have

−1 =

[
α

−√
p

]
=

[
π

−√
p

]t [
α0

−√
p

]
= (−1)t,

which means that t is odd in this case.
If y ≡ −3 mod 8, then ǫ−1 = x − y

√
p with −y ≡ 3 mod 8 and N(η−1) = ǫ−1. Repeating the

above argument, we obtain vq(Tr(
η−1

2 ) is odd. Let η̄ = α− β 4
√
p. We have Tr(η−1) = Tr(η̄ǫ−1) =

ǫ−1Tr(η) = ǫ−1Tr(η). Therefore t = vq(
Tr(η)

2 ) = vq(
Tr(η−1)

2 ) + vq(ǫ
−1) = vq(

Tr(η−1)
2 ) is also odd.

Finally let us prove t = 1. Recall that η = a+ b
√
p+ (c+ d

√
p) 4
√
p with a, b, c, d ∈ Z. Since t is

odd, we have π | a+ b
√
p and π ∤ c+ d

√
p. Then c 6≡ d mod 2. From N(η) = ǫ = x+ y

√
p we have

a2 + pb2 − 2cdp = x. Assume t ≥ 3, i.e. 2π | a+ b
√
p. We must have 2 ‖ a and 2 ‖ b or 4 | a and

4 | b. In both cases, x ≡ −2cdp mod 8. Since 8 | x, we have 4 | cd. But exactly one of c and d is
odd, y = 2ab − c2 − pd2 ≡ d2 − c2 ≡ ±1 mod 8, which is a contradiction to y ≡ ±3 mod 8. Thus
t = 1. �
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